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Abstract: This study investigates the free vibration behavior of nanocomposite beams reinforced with agglomerated single-walled 

carbon nanotubes (SWCNTs) embedded in an epoxy matrix. The effective material properties of the reinforced composite are estimated 

using the Weng model, and the equation of motion for the beam is derived based on Euler-Bernoulli beam theory. A MATLAB code 
is developed to determine the natural frequencies and eigenmodes of the nanocomposite beams. The results demonstrate that the elastic 

modulus of the agglomerated CNT composite increases with the increasing volume fraction of CNTs, leading to an increase in natural 
frequencies. 
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1. Introduction 

A beam is a structural element that is capable of 

withstanding load primarily by resisting bending. The 

important elements of this technological structure 

appear in various forms, including various artifacts, 

such as structural elements of high-rise buildings, 

railways, long-span bridges, flexible satellites, gun 

barrels, robotic arms, aircraft wings [1]. Therefore, 

Marur have modeled composites of epoxy reinforced 

with spherical glass particles and Unit cell models are 

employed to model the composite. The three-unit cell: 

Cylindrical, Spherical, and cubical shape with spherical 

inclusion were taken to evaluate the effective elastic 

properties [2]. The study [3] finds the natural 

frequencies of vibration, which are rather high because 

of the great rigidity of the structure. Different 

approaches have been proposed for the estimation of 

mechanical properties of nanocomposites, such as 

molecular dynamic (MD) simulations, Mori–Tanaka 

(MT), Halpin–Tsai (HT), and the extended rule of 

mixture (EROM). The material is chosen according to 
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specific applications and environmental loads. These 

materials have multiple advantages, which can make 

them attractive from the point of view of their 

application potential. It can be an improvement in 

rigidity, resistance to fatigue, resistance to corrosion or 

thermal conductivity in addition to having a gradation 

of properties thus making it possible to increase or 

modulate performances. Such as reducing local 

constraints or even improving heat transfer [4]. The 

Euler-Bernoulli beam theory, also referred to as 

Engineer's beam theory, Classical beam theory, or 

simply beam theory, is a simplified version of the linear 

theory of elasticity. The calculation of natural 

frequencies of continuous structures [5]; including the 

effects of geometric characteristics (length and cross-

sectional area) and boundary conditions are obtained 

and discussed for the first four modes. Research carried 

out on epoxy composites reinforced with agglomerated 

CNTs gives interesting results and demonstrates that 

the use of long nanotubes can lead to better 

reinforcement. Weng model to estimate the effective 

material properties of CNT reinforced composites [6].  
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This method can be used for different cases of 

nanocomposites reinforced with aligned or randomly 

oriented spheres of agglomerated CNTs Though, the 

traditional rule of mixture and extended rule of mixture 

do not handle such variety of factors. The main is to 

understand and predict their dynamic response under 

various conditions, this research holds significant 

importance due to the unique properties and potential 

applications of carbon nanotube-reinforced composite 

beams, this is a crucial step in unlocking their full 

potential for various engineering applications and 

advancing the field of nanotechnology 

2. Nanocomposite beam reinforced by 
inclusions of CNTs 

2.1 Mori–Tanaka approach 

 Due to their small diameter, low radial elastic 

modulus, and high aspect ratio, CNTs exhibit a 

tendency to agglomerate in polymer matrices. These 

characteristics contribute to reduced bending stiffness 

[7]. In this section to study the influence of the 

agglomeration of CNTs on the effective elastic moduli 

of CNT-reinforced composites. CNTs tend to cluster 

together in a matrix, resulting in a non-uniform 

distribution. Areas with higher CNT concentrations are 

referred to as "inclusions" and are considered to have 

distinct elastic properties from the surrounding matrix. 

The total volume 𝑉௥  of CNTs in the RVE V can be 

divided into the following two parts: 

𝑉௥ = 𝑉௥
௜௡௖௟௨௦௜௢ + 𝑉௥

௠                     (1) 

where 𝑉௥
௜௡௖௟௨௦௜௢௡  and 𝑉௥

௠ denote the volumes of 

CNTs dispersed in the inclusions and in the matrix, 

respectively. Introduce two parameters  𝜁  and 𝜉  to 

describe the agglomeration of CNTs: 

𝜁 =
𝑉௥

௜௡௖௟௨௦௜௢௡

𝑉௥
,        𝜉 =

𝑉௜௡௖௟௨௦௜௢௡

𝑉
         (2) 

where 𝑉௜௡௖௟௨௦௜௢௡is the volume of the sphere inclusions 

in the RVE.  𝜉 , denotes the volume fraction of 

inclusions with respect to the total volume V of the 

RVE When 𝜉 = 1, nanotubes are uniformly dispersed 

in the matrix. The parameter 𝜁  denotes the volume 

ratio of nanotubes that are dispersed in inclusions and 

the total volume of the nanotubes. When,𝜁 = 1, all the 

nanotubes are located in the sphere areas. In the case 

where all nanotubes are dispersed uniformly, the 

average volume fraction𝑐௥of CNTs in the composite is: 

  𝑐௥ =
௏ೝ

௏
                                 (3)                        

The effective modulus of inclusions 𝐸௜௡  and their 

surrounding 𝐸௢௨௧ as 

𝐸௜௡

=
3

8
൜
𝑐௥(ଵି఍)

1 − 𝜉
 𝐸஼ே் + ൤1 −

𝑐௥(ଵି఍)

1 − 𝜉
൨ 𝐸௠ൠ  

+
5

8
ቊ

(1 − 𝜉)𝐸஼ே்𝐸௠

[(1 − 𝜉) − 𝑐௥(1 − 𝜁)]𝐸஼ே் + 𝑐௥(1 − 𝜁)𝐸௠

ቋ  (4) 

𝐸௢௨௧ =
3

8𝜉
 [𝑐௥𝜁𝐸஼ே் + (𝜉 − 𝑐௥𝜁)𝐸௠]

+
5

8
 ൜

𝜉𝐸஼ே்𝐸௠

(𝜉 − 𝑐௥𝜁)𝐸஼ே் + 𝑐௥𝜁𝐸௠

ൠ  (5) 

 

where both the matrix and the CNTs are considered to 

be isotropic, with Young’s moduli 𝐸௠ and 𝐸஼ே் , 

respectively.  

 

Fig. 1 Complete agglomeration   
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2.2 Weng model 

Weng presented a two-phase model for the 

prediction of the effective elastic moduli of 

composites with aligned short fibers. The model is 

based on the Mori-Tanaka method and assumes that 

the composite consists of two phases: the matrix 

phase and the fiber phase. The matrix phase is 

assumed to be continuous and isotropic, while the 

fiber phase is assumed to be discontinous and 

anisotropic. For a 2-phase composite, the bulk and 

shear moduli reduce to: 

𝐾௖௢௠௣

𝐾௠
= 1 +

𝑉௙

ଷ௖೘௄೘

ଷ௄೘ାସ௎೘
+

௄೘

௄೑ି௄೘

           (6) 

𝑈௖௢௠௣

𝑈௠
= 1 +

𝑉௙

଺

ହ

௖೘(௄೘ାଶ௎೘)

ଷ௄೘ାସ௎೘
+

௎೘

௎೑ି௎೘

       (7) 

where the material properties of the constituents are 

calculated from the isotropic bulk and shear moduli of 

the matrix (phase m) and the inclusion (phase f). 

Moreover, following their notation, 𝑐௠  and 𝑐௙  are 

the volume fraction of the matrix and inclusion phase, 

respectively, with  𝑐௠ + 𝑐௙ = 1. From the above 

expressions, the Young’s modulus, normalized by the 

Young’s modulus of the matrix: 

𝐸௖௢௠௣

𝐸௠
=

𝐾௖௢௠௣𝑈௖௢௠௣(3𝐾௠ + 𝑈௠)

3𝐾௖௢௠௣𝐾௠ + 𝑈௖௢௠௣𝑈௠
        (8) 

where the bulk and shear moduli of each phase  

𝐾௠ =
𝐸௠

3(1 − 2𝜈௠)ൗ 𝑎𝑛𝑑 𝑈௠ =
𝐸௠

2(1 + 𝜈௠)ൗ  (9) 

𝐾௙ =
𝐸௙

3൫1 − 2𝜈௙൯
൘ 𝑎𝑛𝑑 𝑈௙ =

𝑓
2൫1 + 𝜈௙൯൘    (10) 

3. Mathematical Formulation  

Consider an elastic beam of length L, Young's 

modulus E, and mass density 𝜌 with uniform cross 

section A, as shown in Figure 1. This theory enables the 

calculation of load-carrying and deflection 

characteristics of beams. 

 
Fig. 2 Geometry of the beam 

Using Euler-Bernoulli beam theory, one can 

obtain the equation of motion of a beam with 

homogeneous material properties and constant cross 

section as follows [12] where I, is the area moment of 

inertia of the beam cross section, w is the transverse 

displacement, and t is time. 

𝜕ସ𝑤

𝜕𝑥ସ
+ 𝜌𝐴

𝜕ଶ𝑤

𝜕𝑡ଶ
= 0    0 ≤ 𝑥 ≤ 𝐿        (13) 

The solution of the Eq. (10) is sought by separation of 

variables. Assume that the displacement can be 

separated into two parts: one is depending on the 

position and the other is depending on time, as follows: 

𝑤(𝑥, 𝑡) = 𝑋(𝑥)𝑇(𝑡)                      (14) 

Substituting Eq. (11) into Eq. (10) and after some 

mathematical rearrangements, we obtained: 

𝐸𝐼

𝜌𝐴𝑋(𝑥)

𝜕ସ𝑋(𝑥)

𝜕𝑥ସ
=

1

𝑇(𝑡)

𝜕ଶ𝑇(𝑡)

𝜕𝑡ଶ
          (15) 

Each side equal to(−𝝎𝟐) to have to have simple 

harmonic motion in the system: 

𝐸𝐼

𝜌𝐴𝑋(𝑥)

𝜕ସ𝑋(𝑥)

𝜕𝑥ସ
=

1

𝑇(𝑡)

𝜕ଶ𝑇(𝑡)

𝜕𝑡ଶ
= −𝜔ଶ   (16) 

The position variable is: 

𝜕ସ𝑋(𝑥)

𝜕𝑥ସ
− 𝛿ସ𝑋(𝑥) = 0𝑤ℎ𝑒𝑟𝑒𝛿ସ = 𝜔ଶ

𝜌𝐴

𝐸𝐼
  (17) 

The time variable is:                     

𝜕ଶ 𝑇(𝑡)

𝜕𝑡ଶ
+ 𝜔ଶ𝑇(𝑡) = 0                 (18) 

Equation (5) solves as: 

𝑋(𝑥) = 𝐶ଵ sinh(𝛿𝑥) + 𝐶ଶ cosh ( 𝛿𝑥) +

𝐶ଷ sin(𝛿𝑥) + 𝐶ସ cos(𝛿𝑥)                (19)  
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Equation (6) solved as: 

𝑇(𝑡) = 𝐶ହ sin(𝜔𝑡) + 𝐶଺ cos(𝜔𝑡)             (20) 

where, 𝐶ଵ , ⋯ , 𝐶ହ are constant. We multiplied (16) by 

(17) to get: 

𝑤(𝑥, 𝑡) = (𝐶ଵ sinh +𝐶ଶ cosh(𝛿𝑥)

+ 𝐶ଷ sin(𝛿𝑥) + 𝐶ସ cos(𝛿𝑥)) 

× (𝐶ହ sin(𝜔𝑡) + 𝐶଺ cos(𝜔𝑡))             (21) 

The constants 𝐶ଵ , 𝐶ଶ , 𝐶ଷ  and 𝐶ସ  obtained from 

the boundary conditions, 𝐶ହ and 𝐶଺  obtained from 

the initial conditions. From equation (14) we get the 

natural frequency of the beam: 

𝑓௡ =
𝜔

2𝜋
  (𝐻𝑧)                          (22) 

3.1 Boundary conditions  

The beam equation is a fourth-order differential 

equation, which means that it has four derivatives. This 

means that there are at most four conditions that need 

to be met in order to solve the equation. These 

conditions are usually, called boundary conditions, and 

they can model different things, such as supports, point 

loads, moments, or other effects here is a different 

boundary conditions. 

3.2 Material properties of CNTRCs 

A beam with Cross-sectional properties h = 0.01m 

Height of the beam, b = 0.02 m, width of the beam and 

length of L = 1 m. The effective material properties of 

CNTRCs are determined. Epoxy matrices reinforced 

with The CNT type used is the single-walled armchair, 

its tube thickness and diameter are respectively th = 

0.35 nm and d = 1 nm, and the Young’s modulus and 

Poisson’s ratio. CNT:𝐸஼ே் = 1000 (GPa),  𝑣௖௡௧ =0.3, 

𝜌஼ே்  = 2300 KG/𝑚ଷ . Matrix : 𝐸௠ =3.5 (GPa), 

𝑣௠=0.3. 𝜌஼ே்  = 1.2 KG/𝑚ଷ[8]. 
 

 

Table 1 Different boundary conditions 

Beam 

configuration 
Clamped-free Clamped-clamped Simply supported 

at 𝑥 = 0 𝑤 = 0 and 
𝑑𝑤

𝑑𝑥
= 0. 

𝑤 = 0  and 
𝑑ଶ𝑤

𝑑𝑥ଶ

= 0. 

𝑤 = 0  and 
𝑑ଶ𝑤

𝑑𝑥ଶ
= 0. 

at 𝑥 = 1 𝑀 =
𝑑ଶ𝑤

𝑑𝑥ଶ
= 0 and 𝑉 =

𝑑ଷ𝑤

𝑑𝑥ଷ
= 0 𝑤 = 0 and 

𝑑𝑤

𝑑𝑥
= 0. 𝑤 = 0  and 

𝑑ଶ𝑤

𝑑𝑥ଶ
= 0. 

4. Numerical Results and Discussion 

The elastic moduli of the composite with 

Complete Agglomeration of CNTs: 𝜁 =1 all the CNTs 

are located within the agglomerated inclusions. 𝜉  = 

0.2, 0.4, 0.6, 0.8 to 𝜉 = 1 all the CNTs are uniformly 

dispersed in the matrix, in this case 𝐸௢௨௧ = 𝐸௠ =

3.5 𝐺𝑃𝐴 still the same 𝐸௜௡𝑎𝑡 𝜉 = 0.2, 0.4, 0.6, 0.8, 1. 

4.1 Elastic moduli of the composite 

 The figure shows at 𝜇 =0.2 the Young’s modulus has 

the higher increasing in function of the volume fraction, 

The decrease in 𝜇 with the increasing of 𝑐௥  Doesn’t 

lead to a better mechanical performance (a decreasing 

in E the elasticity moduli  due to the significant 

agglomeration effect,  

 

The results show that the elastic modulus of the 

composite increases rapidly with 𝜉 = 0.2  and 𝜉 =

0.8. However, the agglomeration effect of the CNTs 

can start to weaken the composite and reduce its elastic 

modulus. Does not lead to a better mechanical 

performance. 
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Fig. 3 Young's Modulus of the surrounding matrix for 
Different Levels of Agglomeration and CNT Volume 

Fraction 

 

Fig. 4 Young's Modulus for Different Levels of 
Agglomeration and CNT Volume Fraction 

 

(a)  

 (b)  

Fig. 5 Elastic moduli of the composite 𝒄𝒓 = 𝟎. 𝟖 (a) 𝝃 =
𝟎. 𝟐, (b) 𝝃 = 𝟎. 𝟖 

4.2 Natural frequencies 

Depending on various boundary conditions, the first 

few natural frequencies and the normalized mode 

shapes for the following beam configurations at 

different distributions were found out: clamped free, 

clamped-clamped and simply supported-simply 

supported mentioned in table 2. 

Table 2 Natural frequencies at different distributions 

 f1 (Hz) f2 (Hz) f3 (Hz) f4 (Hz) 

𝜉 = 0.2 8.91e-06 3.56e-05 8.02e-05 1.42e-04 

𝜉 = 0.8 8.86e-06 3.54e-05 7.98e-05 1.419e-04 

 

Agglomeration can adversely affect the natural 

frequencies of nanocomposite materials by diminishing 

the effective elastic modulus. This reduction in elastic 

modulus, in turn, leads to a decrease in natural 

frequencies. 

4.3 Mode shapes 

 Mode shapes provide insight into how a structure 

deforms during vibration and are crucial in understanding 

its dynamic behavior. They are represented graphically 

and are a fundamental concept in structural dynamics, the 

first mode shapes of all kind of boundary conditions at 

𝜉 = 0.2 and 𝜉 = 0.8 distribution that shows the figures 

.The mode shapes themselves are largely independent of 
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the distribution of any additional materials, like 

agglomeration or nanotubes, and Mode shapes are 

primarily determined by the geometry and boundary 

conditions of the structure. The introduction of 

nanoparticles or nanotubes might alter the material 

properties, but as long as the overall geometry and 

boundary conditions remain the same, the fundamental 

mode shapes will remain consistent. 

 
(a)  

 

(b)  

 

(c)  

Fig. 6 Mode shapes: (a) Clamped-free (b) Clamped- 

Clamped (c) Simply supported 

5. Conclusions 

CNT agglomeration within composite materials can 

significantly reduce their natural frequencies. This 

decrease primarily stems from the reduction in stiffness 

caused by the agglomeration. Agglomerated nanotubes 

tend to weaken the elastic modulus, strength, and 

toughness of the composite. This weakening occurs 

because agglomerates act as defects within the 

material. These defects disrupt the efficient transfer of 

load between the nanotubes and the matrix, ultimately 

leading to premature failure. Consequently, minimizing 

CNT agglomeration during the fabrication of 

composite materials is crucial for optimizing their 

performance and achieving desired properties. 

References 

[1] Khadri Y., Tekili S., Daya E. M., Daouadji A., Guenfoud 

M., M. Merzoug M.: Analysis of the Dynamic Response 
of Bridges Under Moving Loads. International Review of 

Mechanical Engineering 2(1), 91–99 (2009). 
[2] Prabhakar R. Marur, “Estimation of effective elastic 

properties and interface stress concentrations in particulate 
composites by unit cell methods” Acta Materialia 52 

(2004) 1263–1270. 

[3] Odegard, G. M., Gates, T. S., Wise, K. E., Park, C., and 

Siochi, E. J.: Constitutive Modeling of Nanotube-

A
m

p
lit

ud
e



Khaldi et al/ IJME, Vol. 11, Issue 2, pp. 30-36, 2024 
 

36 
 

Reinforced Polymer Composites. Compos. Sci. Technol. 

63(11), 1671–1687(2002). 

[4] Zhang et al, A Study on the Effect of Nanotube Waviness 

and Agglomeration on the Mechanical Properties of 

Carbon Nanotube-Reinforced Composites, journal of 

Nanomaterials, (2022) 

[5] Mura, T, Micromechanics of Defects in Solids, Martinus 

Nijh off Publishers, Dordrecht, ., 1987 

[6] G. J. Weng, "Some elastic properties of reinforced solids, 

with special reference to isotropic ones containing 

spherical inclusions," International Journal of Enginering 

Science, vol. 22, no. 7, pp. 845-856, 1984. 

 

 

 

 

 

 

[7] Shi D-L, Feng X-Q, Huang YY, et al. The effect of 

nanotube waviness and agglomeration on the 

elasticproperty of carbon nanotube reinforced composites 

J Eng Mater 

[8] Technol 2004; 126: 250–257.B. Ramgopal Reddy, K. 

Ramji, “Modeling and Evaluation of Effective Elastic 

Properties of Carbon Nanotubes Reinforced Carbon 

Fiber/Epoxy Multiscale Composites" Materials Today: 

Proceedings 21 (2020) 1099–1103. 

 

 

 

 

 

 

 

 

 

 


