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Abstract: Rapid distortion theory (RDT) is an important tool for modeling turbulent flows. This theory is an analysis of linear 
stability allowing us to predict behavior of turbulent field in presence of mean strain and in the absence of inertial effects. The aim of 

this paper is to simulate homogeneous compressible sheared turbulence using RDT. Numerical simulations are carried out with an 
RDT validated code resolving unsteady linearized equations governing double correlations spectra evolution. These simulations will 

be sufficient to be used for evaluation of equilibrium states of the compressible models of Fujiwara et al. and Huang et al. concerning 
pressure-strain correlation. A certain concordance between RDT and models results is observed. 
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1. Introduction 

 Many researchers are interested in the use of a 

linear approach to modeling compressible 

homogenous sheared turbulence: the rapid distortion 

theory (RDT) (Cambon et al. [1], Simone et al. [2], 

Riahi et al. [3]). This theory permits us to well 

identify compressibility effects on structure of shear 

flows and increase our comprehension of turbulence 

phenomena. Riahi et al. [3] showed that this theory 

can be used to study equilibrium states of 

homogeneous sheared turbulence. So, with RDT, we 

will analyze the performances of the compressible 

models of Fujiwara et al. [4] and Huang et al. [5] 

concerning pressure-strain correlation. The evaluation 

of these models is carried out using results obtained 

by an RDT code developed and validated by Riahi et 

al. [3]. 

In Section 2, equations describing the compressible 

homogeneous sheared turbulence in the spectral space 

are presented as well as numerical method used to 
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solve unsteady linearized equations governing double 

correlations spectra evolution. The third part is 

devoted to the presentation of compressible models to 

be tested. Results of comparison between RDT and 

models of Fujiwara et al. [4] and Huang et al. [5] are 

given in section 4. Finally, we conclude this work. 

2. Mathematical modeling 

2.1 Equations in the spectral space 

The flow to be considered was a compressible 

homogeneous turbulent shear flow. We retained the 

same RDT equations adopted by Simone [6], Simone 

et al. [2]. The linearized equations of continuity and 

momentum controlling the fluctuating of velocity ui 

and pressure p led to the following equations:  
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  The Fourier transform of equations (1) and (2) 

gave equivalent equations in the spectral space: 
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Where 21 jiij δSδλ   is the mean velocity gradient and 

12 I . 
The Fourier transform of the velocity field can be 

written, in the local reference of Craya-Herring, as 
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where  t,k


1̂  and  t,k


2̂  are the solenoidal 

modes and  t,k


3̂  is the dilatational mode. 

2.2 Application: Case of the pure plane-shear 

Based on the local reference of Craya-Herring 

decomposition, we retained the following equations 

system: 
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Where 1k , 2k and 3k  are the components of the 

wave vector k


 and 2
3

2
1 kkk  . Here S denoted 

the shear rate (
2

1

dx

Ud
S  = constant).  

2.3 Doubles correlations 

The spectral tensor of the doubles correlations can 

be expressed as  
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The asterisk is a complex conjugate. 

Then, we wrote evolution equations of these 

doubles correlations (Riahi et al. [1,7]): 
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 Numerical integration of these equations was 

carried out using a simple second-order accurate 

scheme: 

).(
2
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2
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tfΔttfΔttf           (21) 

In the last equation, the derivatives )(tf   and 

)(tf   are expressed exactly from evolution equations 

(11) - (20) and Δt  is the time-step size. 
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3. Presentation of compressible models  

3.1 Spectral writing of double correlations  

The pressure-strain correlations take the following  

forms: 
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3.2 Presentation of compressible pressure-strain 

correlation models 

Model of Fujiwara et al.   

These authors [4] proposed a model for 
pressure-strain correlation. The terms ijΠ  as a 

function of the turbulent Mach number tM  and are 
written in the following form: 
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Model of Huang et al. 

Huang et al. [5] also proposed a model for 

pressure-strain correlation and which is expressed as 

follows: 
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4. Results and discussion 

 In figures 1 and 2, we presented evolution of 

components 11Π , 12Π and 22Π  of the 

pressure-strain correlation models of Fujiwara et al. [4]  

and of Huang et al. [5]. Table 1 shows that results are 

given for two values of initial turbulent Mach number 

3.0(
0
tM  and )5.0

0
tM  and for the same value of 

initial gradient Mach number )100(
0
gM  

corresponding to the compressible regime. In the 

asymptotic states, the Fujiwara et al. [4] model are in 

good agreement with RDT for 11Π , 12Π  and 22Π . 

Moreover, these asymptotic states are independent of 

initial turbulent Mach number. On the other hand, 

Huang et al. [5] model gives results far from the 

forecasts of RDT with the exception of 22Π  

component which tends towards a zero value at 

equilibrium. We note that the different components 

11Π , 12Π  and 22Π  tend towards a zero value at 

equilibrium for infinite non-dimensional times St. This 

value is independent of the initial turbulent Mach 

number. In the equilibrium states, it’s clearly shown 

that there is no energy distribution between the 

different components ijb  of the Reynolds anisotropy 

tensor when   .0
ijΠ  
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Table 1 Initial conditions 

Case 
0gM  

0t
M  

(A1)  100 0.3 

(A2) 100 0.5 
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Fig. 1 Evolution of components ijΠ  of the pressure-strain correlation in case (A1). Solid line indicates RDT results, 

dashed line indicates Fujiwara et al. model, and dotted line indicates Huang et al. model. 
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Fig. 2 Evolution of components ijΠ  of the pressure-strain correlation in case (A2). Symbols as in figure 1.  

 

5. Conclusion 

Rapid distortion theory (RDT) is used to evaluate 

some compressible models for homogeneous sheared 

turbulence. In this work, we have tested 

pressure-strain correlation models in the equilibrium 

states. The model of Fujiwara et al. [4] for 

components 11Π , 12Π  and 22Π  gives results that 

are close to zero but do not show any significant 

deviations from RDT. These results are independent 

of the initial turbulent Mach number. On the other 

hand, the Huang et al. [5] model gives results far from 

RDT except for the term 22Π . Obviously, the zero 

value of the different terms 11Π , 12Π  and 22Π  in 

equilibrium states can be interpreted by the not 

distribution of energy between the different 

components of the Reynolds anisotropy tensor. 
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Nomenclature 

δ     : Dirac delta 

0gM  : initial gradient Mach number 

tM   : turbulent Mach number 

0t
M   : initial turbulent Mach number 

S     : shear rate 

St    : non-dimensional times 
γ     : ratio of specific heats 

iu    : velocity fluctuation 

U    : mean velocity 

p    : pressure fluctuation 

P    : mean pressure 
ρ    : mean density 

λ    : second viscosity coefficient 
    : dynamic viscosity 

υ    : kinematic viscosity 

ijλ    : mean velocity gradient  

a    : mean sound speed  

Δt   : time-step size 

K    : turbulent kinetic energy 

ijb    : anisotropy tensor of Reynolds  

ε    : total dissipation rate of turbulent kinetic energy 
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