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Abstract: In this work, we are interested in the modeling of homogeneous compressible turbulence sheared using rapid distortion 
theory (RDT). This theory widely demonstrated its relevance and its utility to develop models of turbulence and increase our 

comprehension of physical phenomena related to turbulent flows. RDT is used to examine linearity of compressible flows in absence 
of inertial effects. We will use this approach to evaluate equilibrium states (for high values of non-dimensional times St) of the 

Stefan’s models concerning components b11, b12 and b22 of the Reynolds anisotropy tensor. This evaluation is carried out in the 
compressible and pressure-released regimes where RDT is validated. A concordance between results given by RDT and models is 

obtained, except for b12 term and this in the compressible regime.  
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1. Introduction 

Several approaches are used in literature to predict 

turbulent flows. Rapid distortion theory (RDT) is one 

of these approaches. It remains a linear approach in 

the modeling of a compressible homogenous sheared 

turbulence. In a previous work [1], we have used this 

theory to clarify the physics of the compressible 

turbulent flows. An analysis of the behavior of 

different terms appearing in the turbulent kinetic 

energy and the Reynolds stress equations allowed us 

to well identify compressibility effects on structure of 

homogeneous sheared turbulence.  Riahi et al. [2] 

showed that RDT can be used also to study 

equilibrium states of such a type of turbulence. The 

objective of this study is to determine numerical 

solutions of unsteady linearized equations governing 

double correlations spectra evolution. RDT code 

developed by authors [2] solves these equations for 

compressible homogeneous shear turbulent flows. The 
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code is validated by comparing our RDT results with 

direct numerical simulation (DNS) of Simone et al. [3] 

and Sarkar [4] for different values of initial gradient 

Mach number Mg0. Sarkar [4] defined this number by 

a

Sl
M g  , where S, l and a denoted respectively the 

shear rate, an integral lengthscale and the mean sound 

speed, to quantify compressibility effects for 

homogeneous shear flow.  

In the compressible and pressure released regimes, 

we will use this validated RDT code to evaluate 

asymptotic states of Stefan’s models [5] for 

components b11, b12 and b22 of the Reynolds 

anisotropy tensor.  

In section 2, RDT equations expressed in the 

spectral space and numerical method used to solve 

these equations are presented. The Stefan’s models [5] 

for components b11, b12 and b22 of the Reynolds 

anisotropy tensor are given in the third part. Section 4 

is devoted to compare these compressible models with 

RDT results. Finally, we finish this work by a 

conclusion. 
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2. Spectral modeling and numerical method 

2.1 Equations in the spectral space 

We studied a flow which is compressible, 

homogeneous, shear and turbulent. The linearized 

equations of continuity and momentum controlling the 

fluctuating of velocity ui and pressure p can be written 

(Simone [6], Simone et al. [3]) as 
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In the spectral space, the Fourier transform of 

equations (1) and (2) gave the following equations: 
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Where 21 jiij δSδλ   is the mean velocity gradient and 

12 I .   
In the Craya-Herring local reference, the Fourier 

transform of the velocity field can be expressed as 

,)()(ˆ)()(ˆ)()(ˆ)(ˆ 332211  ket,kket,kket,kt,ku iiii




(5) 

where  t,k


1̂  and  t,k


2̂  are the solenoidal 

modes and  t,k


3̂  is the dilatational mode. 

2.2 Application: Case of the pure plane-shear 

In the local reference of Craya-Herring, we 
obtained the following equations system: 
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Where 1k , 2k  and 3k  are the components of the 

wave vector k


 and 2
3

2
1 kkk  . In the case of 

the pure plane-shear, S denotes the shear rate 

(
2

1

dx

Ud
S  = constant).   

2.3 Doubles correlations 

Using the expression of the spectral tensor of the 

doubles correlations  
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(where the asterisk represents a complex conjugate), 

we were able to write evolution equations of these 

doubles correlations (Riahi et al. [2,7]): 
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We used a simple second-order accurate scheme   
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2
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Δt(  is the time-step size), to determine numerical 

integration of equations (11)-(20). The derivatives 
)(tf   and )(tf   are expressed exactly from 

evolution of theses equations. 

3. Presentation of Stefan’s models  

The formulas of Stefan [5] for components ijb  of 

the Reynolds anisotropy tensor are a function of the 

gradient Mach number and can be written as follows:  
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4. Results and discussion 

The code used to evaluate the different models in 

equilibrium states has been developed and validated 

by Riahi et al. [2]. Indeed, these authors have shown 

that states of equilibrium can be studied using rapid 

distortion theory (RDT) and this in the compressible 

regime for high values of non-dimensional times St; 

particularly in the pressure-released regime.  

Initial conditions that we used are listed in table 1. 

The two initial gradient Mach number describing the 

compressible and the pressure-released regimes are 

respectively 100
0
gM and 1000

0
gM . Moreover, 

numerical simulations are made for two initial 

turbulent Mach number 3.0
0
tM  and .4.0

0
tM  

In figures 1 and 2, we present evolution of 

components 11b , 12b  and 22b  of the Reynolds 

anisotropy tensor in the compressible )100(
0
gM  

and the pressure-released )1000(
0
gM  regimes. In 

the compressible regime, equilibrium values of models 

of Stefan [5] for 11b  and 22b  are in good agreement 

with RDT except the term 12b  which gives results 

relatively close to RDT. In the pressure-released 

regime, a good agreement with RDT is obtained for the 

different terms 11b , 12b  and 22b . Asymptotic values 

of these terms are independent of initial turbulent Mach 

number .
0t

M  In the compressible and the 

pressure-released regimes, we note that RDT and 

Stefan’s models [5] give the same asymptotic values 

for components 11b  and 22b  which are respectively 

0.66 and -0.33. For the term ,12b the same 

equilibrium value is obtained only in the 

pressure-released regime. We conclude that, only in 

this last regime, RDT and models of Stefan [5] 

reproduce correctly asymptotic behaviors of the 

different terms 11b , 12b  and 22b . 
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Table 1 Initial conditions 

Case 
0gM  

0t
M  

(a) 100 0.3 

(b) 1000 0.4 
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0.8

 

 

b 11

St
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 Stefan

0 15 30 45 60 75
-0.35

-0.30
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-0.10

-0.05

0.00

0.05
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Fig. 1 Evolution of components ijb  of the Reynolds anisotropy tensor in case (a). 
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Fig. 2 Evolution of components ijb  of the Reynolds anisotropy tensor in case (b). 

 
 

5. Conclusion 

We are interested in the modeling of homogeneous 

compressible turbulence sheared using rapid distortion 

theory (RDT). Evolution of compressible 

homogeneous turbulence has been described 

completely by finding numerical solutions obtained by 

solving linear double correlations spectra evolution. 

Numerical integration of these equations has been 

carried out using a second-order simple and accurate 

scheme. In this work, we tested equilibrium states of 

the compressible models of Stefan [5] concerning 

components ijb  of the Reynolds anisotropy tensor. 

The different components 11b , 12b  and 22b of this 

model have given results which are compatible with 

RDT in the compressible )100(
0
gM  and 

pressure-released )1000(
0
gM  regimes. We note 

that the deviations remain significant for the term 12b  

in the compressible regime. The equilibrium values of 
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these terms are independent of the initial turbulent 

Mach number 
0t

M  which is a parameter 

characterizing the effects of compressibility.          

Nomenclature 

δ     : Dirac delta 

0gM  : initial gradient Mach number 

0t
M   : initial turbulent Mach number 

S     : shear rate 

St     : non-dimensional times 

l      : integral lengthscale 

a    : mean sound speed  
γ     : ratio of specific heats 

iu    : velocity fluctuation 

U    : mean velocity 

p    : pressure fluctuation 

P    : mean pressure 
ρ    : mean density 

λ    : second viscosity coefficient 
    : dynamic viscosity 

υ    : kinematic viscosity 

ijλ    : mean velocity gradient  

Δt    : time-step size 

K    : turbulent kinetic energy 

ijb    : anisotropy tensor of Reynolds  

ε    : total dissipation rate of turbulent kinetic energy 
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