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Abstract: Natural convection for a Herschel-Bulkely fluid, inside a differentially heated square cavity, is studied numerically using 
Fluent/Ansys 15.0 code. The cavity is heated from the vertical sides and insulated from the horizontal ones. We have studied the 
effect of Bingham-number (Bn) at a fixed Rayleigh-number (Ra), then the effect of Rayleigh-number at fixed Bn and finally the 
effect of the rheological index n at fixed Bn and Ra. Prandtl-number (Pr) is taken equal 1.0 for the whole study. Results showed that 
an increasing Bn leads to a flow-intensity decrease, and hence its perturbation. Therefore, temperature field becomes less perturbed 
and the Nusselt decreases. The opposite happens if Bn decreases. Increasing Ra, leads to similar results as those known for the 
Newtonian-case, but with a lower intensity because of Bn effect. The decrease of n has an opposite effect of that of increasing Bn, 
and inversely. A rapid tendency toward the conductive problem (Ra=0.0) is registered if Bn>0 particularly when n>1.0. 
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1. Introduction 

 
For decades, the world has seen the birth of new 

products in various fields. The race towards the 
optimization of the products gave rise to collaborations 
of several disciplines for the same objective. As an 
example, electronic parts development requires, in 
part, the mastery of heat transfer and fluid dynamic 
processes, since the first enemy of these components 
is temperature increase as consequence of Joule’ 
effect, which reduces their performance in a first time 
and risk completely damaging them at a later stage. In 
another part, the rheological properties of fluids must 
also be well controlled. These properties directly affect 
heat transfer processes, by slightly or strongly 
changing the fluid motion nature (its dynamic), 
supposed to ensure the heat exchange. Rheology 
implies that fluid viscosity changes under shear-stress 
effect, which will sometimes accelerate the flow 
motion and sometimes decelerate it. Numerous 
rheological models exist in literature mainly 
formulated from laboratory tests. A rheological model 
is a mathematical equation linking shear-stress to fluid 
deformation, resulting in a non-constant expression of 
viscosity, which is the feature of non-Newtonian 
fluids. For this, one can find many rheological laws 
with different complexity degrees [1]. This complexity 
made their mathematical and numerical treatments 
(simulation) in the momentum and energy equations 
difficult and sometimes still impossible. 

The present work deals with natural convection heat 
transfer in a differentially heated square cavity filled 
with Herschel-Bulkely fluid. This non-Newtonian fluid  
is characterized by a flow threshold stress (τ0) and a 
rheological index (n). Threshold stress characterizes 
the resistance to deformation or flow. It is only from 
this value that the flow begins. The rheological index 
is an exponent in the rheological law of this fluid 
which expresses the decrease or increase in viscosity 
of the fluid according to its value (less than or greater 
than 1.0). This model, proposed in 1926, remains to 
this day one of the most difficult models to study, 
especially numerically. The difficulty is caused by the 
mathematical discontinuity during the passage from a 
non-deformed area (behaves like a solid) to another in 
flow. Viscosity is described as infinite (∞) in the first 
region and dependent on n in the second. 

It should be noted that this type of problem has 
received a lot of studies in literature it's been more 
than 60 years. The extensive bibliographic reviews 
made by Ostrah [2] and Yener et al. [3] enumerated a 
major part of published works from 1953 to 2013. In 
addition, such geometry is widely found in practice for 
Newtonian and Non-Newtonian fluids. Oil-drilling, 
pulp paper, slurry transport, food processing, polymer 
engineering, geophysical systems, electronic cooling 
systems, and nuclear reactors are examples for both 
types of fluids [4,5]. 

For works treating the problem close to our study 
(heated fluid), only few works were found. As 
example, we can cite the work of Turan et al. [6] and 
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Fig.1 Geometry and problem details 
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Vikhansky [7], in which the authors studied the 
problem for a Bingham fluid enclosed in a rectangular 
cavity. Finite difference method were used and they 
were interested on the effects of Ra, Pr and Bn 
numbers on the dynamic (streamlines) and thermal  
(isotherms) fields,  in addition to the heat transfer 
coefficient (Nu). The geometric ratio (height / width) 
has also been processed. Boutra et al. [8] have studied 
the problem in unsteady situation for a square. Lattice 
Boltzmann method is used for solving equations. The 
method has shown great efficiency at low shears that 
usually create numerical instabilities. The vertical 
walls are maintained at constant and different 
temperatures while the horizontal walls are assumed 
adiabatic. The effects of Pr, Ra and Bn are treated, 
where large effects of the three numbers were obtained 
whether on the dynamic or thermal field. For a steady 
state situation, Seghier et al. [9] have studied the 
influence of Ra on the heat exchange coefficient (Nu) 
by comparing the Newtonian case with the non-
Newtonian one. Bn and Pr numbers were supposed 
constant. The authors have shown that Nu increases 
with Ra for both types of fluid, whereas it decreases 
for the Binghamian case compared to the Newtonian 
case by reducing the motion intensity under the 
threshold stress. In addition to the effects of Ra and 
Bn, Chakraborty et al. [10] have studied the inclination 
angle effect applied to a square cavity (in both 
directions). They found that mean Nusselt number 
increases with Ra and decreases with Bn. For large Bn 
values, the heating mode becomes almost purely 
conductive. Inclination angle also has a considerable 
improving effect in counterclockwise direction. The 
opposite is recorded in the other direction. Using the 
finite element method, Huilgol and Kefayati [11] have 
studied the problem for the same fluid, where they 
showed that the non-sheared zone (solid zone) is 
reduced in size as Ra increases and expands as Bn 
increases. This result confirms the findings seen in 
[10]. In addition, a better heat exchange is recorded 
with the increase of Ra and/or the decrease of Bn by 
non-sheared zone shrinkage and thus increase of the 
circulation. It is worth a lot noting that we were unable 
to find studies close to our present work, dealing with 
a Herschel-Bulkley fluid as a heating fluid. 

 
2. Problem description 

 
It is a natural convective heat transfer problem 

inside a square enclosure (Fig.1). The vertical sides are 
at different temperature (Th: hot left wall and Tc: cold 
right wall), while the horizontal ones are insulated. 
Boussinesq assumption is employed for a laminar 
regime. Except density, all the remaining parameters 

are supposed temperature-independent. The heated 
fluid is of Herschel-Bulkely type ( 0 .= + nKτ τ γ ), 
characterized by a yield-shear-stress 0τ and a flow 
index n. This rheological model can describe five 
kinds of fluid following 0τ and n values ( 0 0τ = ; n=1: 
Newtonian fluid; n<1: Pseudoplastique fluid; n>1: 
Dilatant fluid. 0 0τ ≠ ; n=1: Bingham fluid; n≠1: 
Herschel-Bulkely fluid). We note that this model is 
sometimes called the generalized Bingham fluid [1]. In 
this work we have treated only the two last cases when

0 0τ ≠ . For the others, see reference [12]. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Following the previous considerations, the problem 

is two dimensional, and its dimensionless governing 
equations are: 
 
Continuity equation:  
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Energy equation: 
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Boundary conditions: 
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The following parameters are used to get the 

dimensionless equations (stars indicate dimensional): 
* * * * * 2

2
. . .; ; ; ;  = ;  F

C F

T Tx y u L v L p Lx y u v p
L L T T

θ
α α ρα

−
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−
               

(6) 
u , v : Horizontal and vertical velocities respectively; 

aµ : Apparent viscosity; 

,p θ : Pressure and temperature respectively; 
2 3∆

= P

a

C g TLRa ρ β
µ λ

: Rayleigh number; 

Pr = a PCµ λ : Prandtl number; 

0

a

LBn
g T

τ
µ β

=
∆

 : Bingham number. 

We note that the Bingham number characterizes the 
yield-shear-stress (resistance to fluid deformation). 
The resistance to the flow (fluid deformation under 
stress) is much higher as Bn is big. When Bn=0, no 
flow resistance is present. 

 

Since this work treated a heat transfer problem, the 
Nusselt number is calculated for the studied cases to 
observe when rheological behavior leads to an 
improvement or degradation in heat transfer rate. This 
number is calculated using the following expressions: 
 

 x=0

∂
=
∂

i
i

i

Nu
x
θ                                                          (7) 

1

1
=

= ∑
N

moy i
i

Nu Nu
N

                                                            (8) 
 
Where N is the side nodes number and the index i is 
the current node where calculation is done. 

3. Resolution procedure 

Commercial code Fluent/Ansys 15.0 is employed to 
solve the present problem. Firstly, geometry is plotted 
under Workbench-Module, exported then to the 
meshing module, where elements’ number, type and 
fitness are chosen in addition to boundaries nomination 
and their kinds’ definition. Lastly, the geometry and the 
chosen mesh are then exported to the calculation-
Module, where the physical proprieties, the Algorithm 
of resolution, the accuracy of calculation are fixed. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2 Mesh effect on stream-function, isotherms and Numoy; Ra=10+5, Pr=1 and Bn=0.5 
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The presence of yield-stress in the fluid behavior 

leads to a singularity between the yielded and the 
unyielded zones. The fluid behaves like a solid in the 
second zone and a fluid in the first. The transition from 
one zone to the other must pass through a separating 
boundary with infinite viscosity on the solid side, and 
finite viscosity on the fluid side. Thus a difficulty in 
the modulating of this phenomenon rises-up at the 
separating boundary. Different solutions are proposed 
to handle this constraint [13,14]. The mesh refinement 
helps also to overcome a little the problem. For this we 
have made a mesh-results dependency study to choose 
the optimal one. This part of the work leads to the 
choice of 120×120 mesh elements with an 
amplification factor of 1.02 starting from the walls 
among four tested meshes (Fig.2). 

4. Code validation 

After choosing the optimal mesh, we have done 
many validations to be confident with the obtained 
results. We note that we were not able to find a 
published work with a Herschel-Bulkely case. 

We have presented here three validated cases for: 
- A Newtonian fluid (Bn=0 ; n=1) with Ra=10+5,  
  Pr=0.71 (Fig.3) with the work in ref. [15]; 
- A Bingham fluid with different Bn, Ra and Pr values     
 (Fig.4) with the work in ref. [11]; 
- A Bingham fluid with different values of Bn and Ra  
   at Pr=1 (Fig.5) with the work in ref. [6]. Good 
accuracy is found for all the tested cases. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

5. Results and discussion 

As discussed above, we treat a natural convection 
problem for a Herschel-Bulkely fluid. This fluid is Fig.3 Validation for a Newtonian fluid; 

         Ra=10+5, Pr=0.71 
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Fig.4 Validation for a Bingham fluid; 
        Ra=10+5, Pr=1, Bn=0.5 
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Fig.5 Validation for dimensionless  
         vertical velocity at y=0.25m for  
        different Pr. Ra=10+5 ; Bn=1. 
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characterized by a yield-stress represented by the 
Bingham number (Bn) and a rheological index (n). 
Natural convection is characterized by the generation 
of an ascending flow of hot currents (and descending 
near the cold wall in our case) with increasing intensity 
with the value of the Rayleigh number (Ra). 
Therefore, and to better exploit the results, we will 
classify them in the order: 

 

- Bingham fluid (n=1.0) with variable Bn at Ra and 
Pr fixed: To reveal the effect of Bn; 

- Bingham fluid at fixed Bn and Pr for variable Ra: 
To disclose the effect of the flow intensity 
generated by the buoyancy force; 

- Herschel-Bulkely fluids with variable n (<1 then 
>1) with fixed Ra and Pr: To unveil the effect of n 
once the others are illustrated. 

The effect of Pr is not treated in this work. In 
summary it has an opposite effect to that of Ra [12]. 

5.1 Effect of the Bn number (Ra=10+5; Pr=1.0) 

In this part, the values of Ra and Pr have been fixed. 
For the first one the value 10+5 is taken. The choice of 
the Ra value was based on two things: the first is that 
it is a high enough value to have an intense natural 
convection flow; the second is that for this value, two 
circulating zones are observed for a Newtonian fluid 
(Bn=0.0), which makes it easy to observe the effect of 
Bn by making them grow or disappear. It is recalled 
that for high Pr, one risks losing the two circulating 
zones since Pr has an opposite effect to that of Ra. 

Before analyzing the results, it should be 
remembered that the Bingham number reflects the 
effect of the yield stress. A high Bn means that the 
yield-stress to be crossed to have a flow of the fluid is 
hi  gh, the inverse will take place if Bn is small. For 
Bn=0.0, the fluid flows under the effect of small 
buoyancy force (Ra small). Physically, the Bn will 
play an opposite role to that of Ra. In other words; if 
Bn increases for a fixed value of Ra, after a certain 
value of Bn, the flow generated by the buoyancy force 
will stop. This value of Bn corresponds to the shear-
stress generated by Ra. So, for all Ra, we have a Bn 
which cancels the motoring shear-stress. 

The analysis of Figure (6) showing the current lines 
for six values of Bn (0, 1, 2.5, 5, 7.5 and 10) reveals 
that, flow intensity gradually decreases (see captions). 
After a certain value of Bn, the two circulating zones 
disappear and a similar appearance to the case with 
small Ra (single circular zone) is recorded. By 
increasing Bn again, flow intensity becomes very 
small. Bn=10 is taken as superior limit since it is 
largely sufficient to illustrate Bn effect. Consequently, 

one can say that after a certain value of Bn, the 
conduction heating mode (no flow) is reached. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In Figure (7), the effect of Bn on the temperature 

field (isotherms) was presented. It is clear that in view 
of the problem coupling, any disturbance in the 
velocity field will be recorded in the temperature field. 
Thus, as the increase in Bn reduces the intensity of the 
flow and hence its perturbation, the isothermal field 
tends to become vertical when Bn increases. It is 
recalled that for a pure conduction problem, the 
isotherms are perfectly vertical. 

Figure (8) shows the effect of Bn on the value of the 
non-dimensional vertical velocity taken at y=0.25m. 
This position corresponds to the maximum intensity of 
the velocity V. We can see clearly the reduction of this 
velocity with the increase of Bn. For example, the 
value of this velocity is three (3) times greater for 
Bn=0 than that for Bn=5. It becomes fifteen (15) times 
greater when Bn becomes 10. This result implies that 
Bn’effect intensifies strongly after a certain value. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Fig. 7 Effect of Bn number on the temperature field;  
           Pr=1; Ra=10+5 

Fig. 6 Effect of Bn number on the stream-function;  
           Pr=1; Ra=10+5 
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From what has been explained, one can conclude 

that the heat exchange will degrade when Bn 
increases. This is the direct cause of the reduction of 
perturbations in flow and temperature fields (bad 
mixing and thus bad heat exchange). The values in 
table (1) confirm this for Nusselt (mean, max and 
min). By way of indication, the value of Numoy for 
Bn=10 is close to that for Ra=10+3 for Bn=0.0 [2;5]. 
The yield-stress (for Bn=10) has reduced the buoyancy 
force magnitude by a hundred (100) times. 

 
 
 
 
 
 
 
 
 
 
 

5.2 Effect of the Ra number (Bn=1; Pr=1.0) 

In figure (9) we have presented stream-function and 
isotherms results for Bn=1 and Pr=1 and four values 
of Ra (10+3, 10+4, 10+5 and 10+6). It is well known that 
when Ra increases, the buoyancy forces increase. As a  
result, the natural convection flow intensifies and 
circulating areas are formed for high Ra values. The 
reverse occurs when Ra decreases. This is well known 
and verified for a Newtonian and power-law fluids [2; 
5], when Bn is nil. When the fluid is a Bingham kind, 
the yield-stress delays the generation of the flow. The 
effect of Ra becomes less intense. It is clear that this 
phenomenon is clearer as Bn is large. But, a strong Ra 
comes to generate the flow. For this we can see from 
the figure the opposite effects of Bn and Ra.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 8 Vertical velocity profile at y=L/2 
           for different Bn; Pr=1; Ra=10+5 

Table 1 Effect of Bn on Nu number; Ra=10+5; Pr=1 

 
Bn 

0.0 1.0 2.5 5.0 7.5 10.0 

Numoy 4.5721 3.9965 3.3069 3.1213 2.6255 2.3667 

NuMax 7.9946 7.0038 6.6733 6.1878 5.8933 5.2767 

NuMin 0.7113 0.6333 0.5767 0.57 0.5667 0.5567 

 

Fig. 9 Effect of Ra number on the velocity (stream-function) and temperature fields; Pr=1; Bn=1 
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This is well known and verified for a Newtonian and 

power-law fluids [2; 5], when Bn is nil. When the fluid 
is a Bingham kind, the yield-stress delays the 
generation of the flow. The effect of Ra becomes less 
intense. It is clear that this phenomenon is clearer as 
Bn is large. But, a strong Ra comes to generate the 
flow. For this we can see from the figure the opposite 
effects of Bn and Ra.  

Compared to Bn=0 (Newtonian Fluid Fig. 6), the 
effect of Ra is less important. Therefore, the velocity 
and temperature fields are less disturbed. 

In Figure (10), the effect of Ra on the vertical 
velocity V at y=L/2 was presented. As expected, it 
increases when Ra increases due to the intensification 
of buoyancy force. Compared to the Newtonian case 
(Bn=0.0, Fig.8), the registered magnitudes are lower 
(compare for Ra=10+5). 

Since the heat exchange is directly related to the 
disturbances of the two fields, and this exchange is 
much better (Nusselt larger) when disturbances are 
strong, there is an increase in the Nusselt value with 
Ra (Table 2). These values are obviously lower than 
those for Bn=0 and higher if Bn becomes greater than 
1.0 (compare with Table.1). 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

5.3 Effect of the index n (Ra=10+5; Bn=1; Pr=1.0) 

In this last part, we will analyze the effect of the 
rheological index n for a non-nil yield-stress. 
Recalling that for n<1, the viscosity of the fluid 
decreases while for n>1 it increases. This effect, 
combined with that of Bn, will reduce the braking of 
the flow when n is less than 1.0. On the other hand 
when it is greater than 1.0, braking has been amplified  
(the braking caused by Bn will be intensified by the 
increase of viscosity). So, the Bingham case (n=1), can 
be used to serve as a witness. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.10 Vertical velocity profile at y=L/2 
            for different Ra; Pr=1; Bn=1 

Fig. 11 Effect of index n on the velocity (stream-function) and temperature fields; Ra=10+5; Bn=1; Pr=1; Bn=1 

 Ra 
 10+3 10+4 10+5 10+6 

Numoy 1.0985 1.7117 3.9965 7.2597 

NuMax 1.4633 2.6167 7.0038 12.7824 

NuMin 0.5567 0.5833 0.6333 0.74 

 

Table 2 Effect of Ra on Nu number; Pr=1; Bn=1 
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In figure (11), stream-function and isotherms are 
presented for five n values (0.5; 0.75; 1; 1.5 and 2.0). 
It can easily be seen that the disturbance in both fields 
(velocity and temperature) increases as n decreases 
and decreases when it rises up. This is due to fluid 
viscosity reduction and hence friction in the first kind 
(n<1). A bizarre circulating zones are formed, 
indicating the high intensity of the flow. The opposite 

in the second kind (n>1) happened with the 
disappearance of the circulation zones. Compared to 
the cases (Bn=5; Ra=10+5 -Fig.6- and Bn=1; Ra=10+4 
-Fig.9-), we can see a close results to those when 
n=2.0. This indicates that the increase of n has a 
likewise effect of that of Bn and an opposite effect of 
that of Ra. Thus a tendency to the conduction mode is 
faster as n increases.

From the above explanation, we can clearly 
understand the great difference in the vertical velocity 
magnitudes from n=0.5 to n=2.0 presented in figure 
(12). For those two results as example, the maximum 
value registered for n=0.5 is about 18 times that for 
n=2.0. Furthermore, the first maximum is close to the 
wall while the second is far from it. This is known as 
the high velocity increase with fluid shear-thinning 
(viscosity decrease under shear stress) [1;16]. 

Consequently, a better heat exchange is found when 
n decreases and the opposite when it grows-up as 
shown in Table 3. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
6. Conclusion 

 
The obtained results from this numerical simulation 

allowed us to conclude that: 
 

- The increase in of Bingham number (Bn) increases 
the resistance to the flow. For a given Rayleigh 
number (Ra), reductions of dynamic and thermal 
fields perturbations are recorded as Bn increases; 

- Any reduction of the dynamic and thermal 
disturbances, results in a reduction in the heat 
transfer intensity (Nu). This may goes until a pure 
conductive heat mode for high Bn values; 

- For a given Bn (nil or not), the increase in buoyancy 
force (Ra) improves heat exchange by increasing the 
dynamic and thermal disturbances; 

- The rheological index (n) has a remarkable effect 
and there are two cases: 
• For n<1.0: Decreasing the viscosity when n 

decreases reduces the effect of Bn. An 
improvement in heat exchange results by 
disturbances amplifications; 

• For n> 1.0: The increase in viscosity (viscous 
friction braking) when n increases favors the 
effect of Bn. Degradation in the Nusselt value is 
obtained. A faster trend towards the case of pure-
conduction (complete blocking) is recorded when 
n and Bn increase at the same time that each 
independently. 
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