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Abstract: This work deals with the numerical study of mixed convection in a saturated porous medium which is enclosed in 

horizontal channel. A laminar flow model for mixed convection with porous media is the focus of this work. The porous media is 

modeled through the Brinkman-extended Darcy’s equation. The Boussinnesq-Oberbek approximation is used to simulate the effects 

of mixed convection. The Control Volume Finite Element Method is used to elaborate the computational code. Then, Implicit 

Alternates Directions method is used for solving the governing equations. The coupled pressure-velocity is treated by using the 

SIMPLER algorithm. The effect of the Prandtl, the modified Brinkman, the Darcy and the Raleigh numbers on the total entropy 

generation as well as on averaged Nusselt number are studied. 
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1. Introduction 

Analysis of a laminar flow in a channel filled with 

saturated porous media has significantly increased 

during recent years because the interaction between the 

clear fluid and the porous system is diverse and 

complex. A large overview of flow through porous 

media for many systems and situations are well 

documented in the literature [1, 2]. Al-Hadhrami et al. 

[3] investigated the combined free and forced 

convection of a fully developed Newtonian fluid within 

a vertical channel composed of porous media when 

viscous dissipation effects are taken into consideration. 

Tao [4] investigated the fully developed mixed 

convection with uniform wall temperature in a vertical 

channel. 
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The mixed convection in a vertical channel filled by a 

porous medium is studied by Ingham et al. [5] with 

viscous heating effect. Umavathi et al. [6, 7] examined 

numerically and analytically, mixed convection in a 

vertical channel filled with a porous medium using 

Brinkman-Forchheimer model. The second law of 

thermodynamics is applied to investigate the 

irreversibility in terms of entropy generation. Bejan 

[8] was the first author that studied the entropy 

generation in a convective heat transfer in a pipe flow.  

In all cases considered in his research he found that 

the pipe wall region acted as a strong concentrator of 

irreversibility. Baytas [9] investigated the entropy 

generation for free and forced convection in a porous 

cavity and a porous channel for different flow 

regimes. The  entropy  generation  rate  in  a 

laminar flow through a channel filled  with  

saturated  porous  media  was  investigated  by  
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[10]  and  [11]  for different  thermal  boundary 

conditions.  The Brinkman model was employed. 

The  result  showed that  the  heat  transfer  

irreversibility dominated  over  the fluid  friction 

irreversibility and the viscous dissipation had no effect 

on the entropy generation rate at  the centerline of the 

channel.  A numerical  study  is  reported by 

Hooman  et  al. [12] to investigate  the  entropy  

generation due to forced convection in a parallel plate  

channel  filled  by  a  saturated porous  medium.  

Two different thermal boundary conditions were 

considered being isoflux and isothermal walls.  

Increasing  the porous  media  shape  factor  and  

the Brinkman  number,  and  decreasing the  

dimensionless  degree  of irreversibility  of  the  

problem,  as reflected  in  (Ns).  Moreover, one 

concludes that different arrangement of the parameters 

will lead to completely different behavior for both 

(Ns) and (Be) as described. Guo et al. [13] 

numerically studied the effect of viscous dissipation 

on entropy generation for laminar flow region for 

different fluids in curved square microchannels.  

Furthermore, Rajiv Dwivedi [14] presented the 

application of the second law of thermodynamics to 

the incompressible viscous laminar flow through a 

channel filled with porous media. The result shows 

that the viscous dissipation has no effect on the 

entropy generation rate at the centerline of the 

channel. Entropy generation in a vertical square 

channel packed with saturated porous media, and 

subjected to differentially heat isothermal walls was 

numerically investigated by Abdulhassan et al. [15]. 

He showed that the value of the entropy generation 

number decreases as the Reynolds number, Darcy 

number increases and Eckert number decreases. The 

results indicate that irreversibility due to fluid friction 

dominate for higher Darcy numbers, while as Darcy 

decrease, the irreversibility dominates due to the heat 

transfer. 

The aim of this investigation is to study the fully 

developed mixed convection in a horizontal channel 

filled by a porous medium under a vertical 

temperature gradient. The analysis was performed 

using Darcy–brinkman formulation with the 

Boussinesq approximation. Influence of Rayleigh 

number, Prandtl number and the Darcy number on the 

entropy generation due to heat transfer and viscous 

friction effect was investigated.   

2. Mathematical formulation 

The system under consideration is a horizontal 

channel filled with a saturated porous media. To avoid 

discontinuity, the temperature of incoming stream is 

assumed to vary linearly from Th (hot temperature) at 

the bottom wall to Tc (cold temperature) at the upper 

wall.The medium is assumed to be isotropic, 

homogeneous and in thermodynamic equilibrium with 

the fluid. The flow in the porous channel is laminar 

and two-dimensional. All physical properties of the 

fluid are assumed to be constant, except its density 

which satisfies the Boussinesq approximation such 

that: 

0 01 ( )T T T        

0 , 0T and T are the density of fluid, the reference 

temperature and the thermal volumetric expansion 

coefficients, respectively. It is given by:  

0

1
( )T p

p

T


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 
 

Figure1. Schematic diagram of the problem. 
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Using the Darcy-Brinkman model, the dimensionless 

equations are written as follows: 

 

( ) 0div V   

 
.Rex

x
V x

V P
div J V

X Da

  
   
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  .

.Re Re.y
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V y
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where :     
1

RexV x xJ V V grad V


 


 

 
1

ReyV y yJ V V grad V


 


 

 
1

Re.Pr
J V grad      

The boundary and initial conditions appropriate to 

laminar flow within the differential heated porous 

channel are: 

0 X L H   ; 0Y  ; 0x yV V   

; 1  0 X L H   ; 1Y  ; 0x yV V   ; 0   

0X  ; 0 1Y  ; 6 (1 )xV Y Y  ; 0yV  ; 1 Y    

X L H ; 0 1Y  ;
1

0

0, 1,( , )X X YV dY V V
X

 
    

  
 

At 0  ; 0x yV V  ; 0P  ; 0.5 X  

 

3. Entropy generation 

According to Mahmud and Fraser [16] the local 

volumetric rate of entropy generation for a viscous 

incompressible fluid defined by: 

 
2 2 *

2 2
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2 22

* 2 2
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The first term on the right-hand side of Eq. 9 

represents the heat transfer part of local entropy 

generation, the second is the Darcy viscous entropy 

generation and the third represents the clear fluid 

viscous entropy generation. 

Where Da and Br
*
 are the Darcy number and the 

modified Brinkman number respectively. The 

dimensionless total entropy generation for the entire 

channel is obtained by integrating (9):  

1

t l,a

0 0

L H

S S dxdy    

From the expression for total entropy generation 

number (10), the time-averaged total entropy 

generation can be evaluated using the following 

equation:   

t t

0

1
S S d



 
 

 

The thermal heat flux exchanged between the walls 

and the flow is characterized by the space-averaged 

Nusselt number evaluated as follows: 

0

1
L H

Nu NudX
L H

   

where Nu is the local Nusselt number defined as: 

Nu
Y





 

4. Numerical procedure 

The purpose of using the numerical method is the 

determination of the temperature and the velocity 

scalar fields. From  the  known  temperature  and  

velocity fields,  calculated  at  any  time  local  

entropy  generation  Sl,a  is then  obtained.  The 

total entropy generation is calculated by numerical 

integration. The numerical used method consists on 

the Control Volume Finit Element Method (CVFEM) 

of Saabas and Baliga [17].  The used numerical code 

written in FORTRAN language was described and 

validated in details in Abbassi et al. [18, 19]. 

In order to assess the accuracy of our numerical 

technique, the results obtained by the present method 

are compared with those of the laminar flow in a 

horizontal porous channel reported by Mahmud and 
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Fraser [16] and the laminar flow in a vertical porous 

channel given by Abdulhassan et al. [15]. A good 

agreement between our results and the previous ones  

as illustrated in table 1.

 

Table 1: Maximum dimensionless velocity component in X direction for Pr=0.7, Re=100.

 

Darcy number This study Mahmud and Fraser [16] Abdulhassan et al. [15] 
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1.50 
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1.30 
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1.55 

1.59 

1.59 

1.59 

1.59 

5. Results and discussions 

In this paper, the porosity and the Reynolds 

numbers are fixed at 0.5. The operating parameters are 

in the following ranges: 10
3 

≤ Ra ≤10
5
; 10

-6
 ≤ Da ≤ 

10; 10
-5 

≤ Br
* 
≤ 10

-1
; 4 ≤ Pr ≤ 0.2. The viscosity ratio 

and the specific heat capacity ratio they are fixed to 

unity.  

The variation of total dimensionless entropy 

generation versus dimensionless time for different 

Prandtl number is illustrated in Fig. 2. The Raleigh, 

the Reynolds, the Darcy and the porosity numbers are 

fixed at 10
4
, 10, 10

-2 
and 0.5 respectively. As can be 

seen from the indicated figure the evolution of entropy 

generation in time is asymptotic for Pr = 4 and 

oscillatory asymptotic for Pr = 1.5. Oscillatory 

periodic behaviour of entropy generation is observed 

for Prandtl ranges between 1 and 0.2. This behaviour 

indicates a periodic structure inside the system. This 

structure maintained by the consumption of an 

energetic portion received by the system is known as 

dissipative structure. As a consequence, the system 

acts in the non linear branch of thermodynamics of 

irreversible processes. From this figure, one can see 

that value of entropy generation increases with the 

decreasing of Prandtl number. This is due to the 

augmentation of irreversibility due to viscous effects. 

The irreversibility due to the heat transfer is 

practically non effect on entropy generation for low 

Prandtl numbers. 

 

Fig. 2 Variation of total dimensionless entropy generation 

versus dimensionless time for different Prandtl number at 

Ra = 104, Re = 10, Da = 10-2 and  = 0.5. 

 

Figure 3 illustrates the evolution of the total entropy 

generation with the Darcy number for different values 

of Prandtl number. The Raleigh, the Reynolds and the 

porosity numbers are fixed at 10
4
, 10 and 0.5 
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respectively. Because of the important difference 

between the entropy generation values, alogarithmic 

scale is used. As can be seen from Fig. 3, for low 

values of Darcy number (less than 10
-3

), the 

time-avearge entropy generation decreases rapidly 

when increasing the Darcy number. In this case, the 

Prandtl number has not effect on the total entropy 

generation. This decreasing of the total entropy 

generation can be justified by noting that, for very 

small Darcy number, the velocity and temperature 

gradients are insignificant, and consequently the clear 

fluid viscous and the heat transfer dissipations come 

to be negligible. Only the Darcy viscous entropy 

generation (Sl,a,D) persists, and presents important 

values for very small Darcy number. When the Darcy 

number increase (higher than 10
-3

), total entropy 

generation slightly increase. For Darcy number equal 

to 1, the total entropy generation increases when the 

Prandtl number decreases. This increase due to the 

predominance of the clear fluid viscous and the heat 

transfer irreversibility compared to Darcy viscous 

irreversibility.  

 

Fig. 3 Variation of average entropy generation as function a 

Darcy number for different values of Prandtl number at  = 

0.5, Re = 10 and Br* = 10-3. 

 

The variation of the time-average entropy generation 

as a function of modified Brinkman number is plotted 

in Fig. 4 for different value of Prandtl number. The 

Raleigh, Darcy and porosity numbers are fixed at 10
4
, 

10
-2 

and 0.5 respectively.  It can be concluded that 

for a given modified Brinkman number value, total 

entropy generation decreases with the Prandtl number. 

For a fixed Prandtl number, the total entropy 

generation is an increasing function of the modified 

Brinkman number.  Furthermore, Fig. 4 shows a 

slight increase of the total entropy generation with the 

Prandtl number at small values of modified Brinkman 

number and a rapid increase of the total entropy 

generation at relatively high value of the modified 

Brinkman number. This means that the irreversibility 

due to viscous effects is the dominant part of the total 

entropy generation (Sl,a) over that the irreversibility 

due to the heat transfer. 

 

 
Fig. 4 Variation of the averaged entropy generation as a 

function of modified Brinkman number for different 

Prandtl number at Re = 10, Ra = 104 and Da = 10-2. 

 

Figure 5 show the effect of the Darcy number on the 

heat transfer for different values of Raleigh number, 

varied in the range 10
3
 to 10

5
. The Prandtl and the 

porosity numbers are fixed at 0.7 and 0.5 respectively. 

The modified Brinkman number fixed at 10
-3

. The 

alogarithmic scale is used in the bottom axis. As can 

be seen from this figure, at low value of Rayleigh 

numbers (Ra = 10
3
) the Darcy number has not effect 

on the averaged Nusselt number. For low values of 

Darcy number (Da=10
-4

), the variation of averaged 

Nusselt number is practically constant. The 

convection is insignificant, thus the flow is converted 

into conduction regime. For high Darcy number the 



Tayari et al. / IJME, Vol. 3, Issue 1, pp. 25-32, 2015 

 

  
30 

averaged Nusselt number increases with Rayleigh 

number. The convective heat transfer effect is 

predominant. For a fixed value of Rayleigh number, 

the effect of the Darcy number is more and more 

pronounced. Thus, the velocity and thermal gradients 

increase inducing an increase of the thermal and 

viscous dissipation and consequently an increase of 

the averaged Nusselt number. 

 

 
Fig. 5 Influence of the Darcy number on Nusselt number 

for different values of Raleigh number at  = 0.5, Pr = 0.7, 

Re = 10 and Br* = 10-3. 

6. Conclusion 

In this work, the Navier–Stokes and energy equations 

are modeled by Darcy-Brinkman model. Influence of 

dimensionless parameters on entropy generation in 

mixed convection through a porous channel is 

numerically studied at fixed value of porosity at = 

0.5. The most important notice points given by the 

present investigation are the following:  

1- For Darcy, Rayleigh and Brinkman numbers 

fixed at Da = 10
-2

, Ra = 10
4
 and Br

* 
= 10

-3 

respectively. Results show the entropy generation 

increases with the decreasing of Prandtl number. 

This is due to the augmentation of irreversibility 

due to viscous effects.  

2- The total entropy generation decreases rapidly 

when increasing Darcy number from 10
-6

 to 10
-3

. 

This case corresponds to a dominance of Darcy 

viscous entropy generation. The Prandtl number 

effect on total entropy generation is well seen for 

Darcy number upper than 10
-3

, therefore the 

convection effects in the porous channel 

beginning to be more pronounced. As a 

consequence, the clear fluid viscous entropy 

generation increases, whereas the Darcy viscous 

irreversibility decreases. For decreasing Prandtl 

number, results show a rapid increase of the total 

entropy generation at relatively high value of the 

modified Brinkman number.  

3- The Prandtl and the modified Brinkman numbers 

are fixed at 0.7 and 10
-3

 respectively. It can be 

concluded that the Nusselt number increase with 

the Darcy number for a fixed value of Raleigh 

number (≥ 10
4
). For Darcy number more than 

10
-4

, Nusselt number increases.  

Nomenclature 

Da : Darcy number (K/H2) 

K : Permeability of the porous media (m2) 

g : gravitational acceleration (m.s-2) 

Ra: Rayleigh number in porous media    

(gΔTH3/υ.αeff) 

Re: Reynolds number (Hu0/υ) 

Pe: Peclet number (Re.Pr) 

Br:Brinkman number (Ec.Pr) 

Br*: modified Darcy-Brinkman number (Br/Ω) 

Ec: Eckert number (u0
2 /cpΔT) 

u0 :average velocity (m.s-1) 

H: channel width (m) 

L: length of the channel (m) 

p: pressure nondimensionalized (N.m-2) 

P: dimensionless pressure 

Pr: Prandtl number (µcp/km) 

t: time (s) 

T: temperature (K) 

T0: mean Temperature [(Th+Tc)/2] (K) 

ΔT: temperature difference (Th-Tc) 

Nu: the space-averaged Nusselt number 

S: dimensionless entropy generation (J.s-1.K-1) 
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St: time average entropy generation (J.s-1.K-1) 

v : dimensional velocity vector (m.s-1) 

V:  dimensionless velocity vector 

vx,vy: velocity components in x and y directions 

respectively (m.s-1) 

Vx,Vy: Dimensionless velocity components in X and 

Y directions respectively 

x,y: Cartesian coordinates (m) 

X,Y : dimensionless Cartesian coordinates 

Greek symbols 

: Thermal expansion coefficient (K-1) 

 : porosity of the porous medium 

: dimensionless temperature 

 : dimensionless period 

ρ : mass density (kg.m-3) 

σ: specific heat capacities ratio ((ρc)m/(ρc)f) 

Λ: viscosity ratio (µeff/µ) 

µ: dynamic viscosity (kg.m-1s-1) 

υ : kinematic viscosity (m2.s-1) 

 : dimensionless time 

Ω : dimensionless temperature difference (ΔT/T0) 

Subscripts 

a : dimensionless 

c: cold wall 

F: fluid friction 

H: heat transfer 

h : hot wall  

l : local 

t :  total 

m :  porous media 

f :  fluid 

s :  solid 
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