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Abstract:We apply a predictor-multicorrector scheme to thePressure Stabilized and Streamline Upwind Petrov-Galerkin (PSPG and 
SUPG) stabilized incompressible Navier-Stokes equations, solving separate systems for the velocity and pressure. The advective terms 
are treatedexplicitly. The algorithm is tested against the analytical solution for the Taylor-Green vortices case and shown to be of 
second order accuracy. We analyze the performance and compare with a fully coupled, implicit solution technique. The semi-implicit 
predictor-multicorrector scheme proves to be advantageous when small time steps are required due to the flow physics. 
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1. Introduction 

The Galerkin finite element method has attractive 

properties: it has second order accuracy in case of 

linear shape functions and a rigorous mathematical 

foundation, naturally supporting unstructured grids 

over a wide variety of element types. However, due to 

the central-difference type discretization, it is 

inherently unstable when applied to the Navier-Stokes 

equations. The Pressure Stabilized and Streamline 

Upwind Petrov-Galerkin  (PSPG and SUPG) 

stabilizations overcome this problem while retaining 

second order accuracy and allowing equal order 

interpolation for the pressure and velocity [1]. 

In [2] these stabilizations are applied together with 

an extrapolation of the velocity to linearize the 

advection operator. With a Crank-Nicolson time 

discretization, this method is second order accurate in 

both time and space. A single linear system must be 

solved at each time step, yielding a discrete solution for 

the pressure and velocity at each node. 
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For three-dimensional problems, the number of 

unknowns quickly reaches into the millions, imposing 

the use of Krylov methods to solve the linear system. 

For fast convergence, a preconditioner is required. We 

can use algebraic multigrid [3], or one of the 

specialized preconditioners available in literature 

[4-6].The convergence rate of these algorithms often 

degrades to some extent as the Reynolds number 

increases or the mesh is refined. The cost per outer 

Krylov iteration also increases, since most of the 

specialized preconditioners rely on the solution of a 

Poisson-like problem and a solution for the velocity 

linear system. The preconditioned solution of the 

coupled linear system imposes no restriction on the 

time step, so it is effective as long as the physical 

timescales of the flow are relatively large. 

In the present work, we explore the situation where 

the physical timescale of interest corresponds to 

imposing a Courant number near unity. In [7] a 

predictor-multicorrector scheme is used to solve the 

linear system arising from the SUPG stabilized 

equations in a segregated fashion, i.e. solving separate 

equations for the velocity and the pressure while 

optionally treating the diffusive and advective terms 
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explicitly. We apply this method to the PSPG/SUPG 

stabilized equations with Crank-Nicolson time 

stepping, but keep the advective term purely explicit. 

The resulting scheme remains second order accurate in 

time and space, but it imposes a time step restriction 

due to the explicit treatment of the advection. The 

objective of this paper is to describe the development 

of the scheme and compare it with the existing coupled 

method for some benchmark cases. 

We first introduce the finite element formulation for 

the fully coupled approach as it was presented in [2]. 

Next, we describe the transformation to a segregated, 

semi-implicit scheme. The accuracy is then evaluated 

using the Taylor-Green case. Finally, we run some 

large-scale benchmarks to compare the performance of 

the coupled and segregated approach before drawing 

conclusions. 

2. Numerical method 

The governing equations for incompressible flow 

are: 

డ࢛

డ௧
൅ ሺ࢛ ڄ ሻ࢛ߘ ൅

࢛ሺఇ࢛ڄሻ

ଶ
൅ ݌ߘ െ ଶ࢛ߘߥ ൌ ૙ (1) 

ߘ ڄ ࢛ ൌ 0 (2) 

Here, ࢛is the velocity, ݌ is the kinematic pressure (i.e. 

the pressure divided by the density), ݐ is the time andߥ 

is the kinematic viscosity. We use the skew symmetric 

formulation for the advection term in the momentum 

equation for improved conservation of kinetic energy 

[8]. To obtain the finite element formulation, we 

multiply the equations with a set of weighting 

functions, interpolate the unknowns between discrete 

nodes using shape functions and integrate over the 

domain. The weighting and shape functions are chosen 

to be identical, yielding a Galerkin formulation. The 

time derivative is approximated using the ߠ-method. 

This procedure yields a discrete system, with an 

unknown pressure and velocity at time level n+1 to be 

computed at each node in the mesh. The global shape 

functions are non-zero only in a node and its 

surrounding elements. This means that the integrals can 

be evaluated as a sum of integrals over these elements. 

This global system can thus be written as the sum of N 

element contributions: 

∑ ቀ
ଵ

௱௧ ௘ܶ ൅ ௘ቁܣߠ ሺ࢞௘
௡ାଵ െ ࢞௘

௡ሻே
௘ୀଵ ൌ െܣ௘࢞௘

௡ (3) 

The parameter ߠ controls the time stepping and should 

be set to 1 for a forward Euler method and 0.5 for the 

Crank-Nicolson scheme. The vector of unknowns at 

the element level is laid out by grouping the nodal 

values per unknown, i.e. for a 3D element with ݉ ൅ 1 

nodes: 

࢞௘
௡ ൌ ሾ݌଴

௡ ڮ ௠݌
௡ ሺݑ଴

௡ሻ଴ ڮ ሺݑ଴
௡ሻ௠ ଶݑሺ ڮ

௡ሻ௠ሿ 

This results in the following block structure for the 

matrices ܣ௘ and ௘ܶ: 

௘ܣ ൌ ൤
௣௣ܣ ௣௨ܣ

௨௣ܣ ௨௨ܣ
൨ ൌ
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ێ
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 (4) 

We now apply the stabilized finite element method to 

equations (1) and (2) to obtain the following 

expressions for each block: 

௣௣ܣ ൌ න ߬௉ௌ
ఆ೐

ߘ ௣ܰ
ߘ் ௣ܰ݀ߗ௘ 
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௨ܶ೔௨೔
ൌ ׬ ሺ ௨ܰ ൅ ߬ௌ௎ ෥࢛௔ௗ௩ߘ ௨ܰሻ்

௨ܰ݀ߗ௘ఆ೐
 (5) 

Here, ௨ܰ  and ௣ܰ are the shape functions for the 

velocity and pressure, respectively. They are row 

vectors of size ݉ ൅ 1 with coefficients depending on 

the spatial coordinates. We use mapped coordinates so 

the integrals can easily be evaluated numerically using 

Gaussian quadrature. The indices ݅ and ݆ iterate over 

the number of dimensions of the problem, indicating a 

single component of a vector variable or a row of a 

gradient matrix ܰߘ . The stabilization terms are 

multiplied with their respective stabilization 

coefficients ߬௉ௌ  for the PSPG stabilization, ߬ௌ௎  for 

the SUPG stabilization and ߬஻௎ for the bulk viscosity 

term. The PSPG term allows the use of equal-order 

interpolation for the velocity and the pressure. It 

introduces a non-zero ܣ௣௣  block, consisting of the 

Laplacian of the pressure. The SUPG stabilization 

corresponds to upwinding in the streamwise direction, 

i.e. the weight of upstream nodes is increased. The bulk 

viscosity term is necessary for flows that are strongly 

dominated by advection, and is sometimes called 

“grad-div” stabilization [9] or the “least squares on 

incompressibility constraint” [10]. 

The values for the stabilization parameters must be 

chosen carefully: they should be large enough to obtain 

the stabilizing effect, but if they are too large the 

scheme becomes too dissipative and accuracy suffers. 

We follow the definitions given in [10]: 

߬ௌ௎ଵ ൌ
݄

2ԡ෥࢛௔ௗ௩ԡ
 

߬ௌ௎ଶ ൌ
ݐ߂
2ܿଵ

 

߬ௌ௎ଷ ൌ
௛మ

௖మఔ
                                 (6) 

߬ௌ௎ ൌ ൬
1

߬ௌ௎ଵ
൅

1
߬ௌ௎ଶ

൅
1

߬ௌ௎ଷ
൰

ିଵ

 

߬௉ௌ ൌ ߬ௌ௎ 

߬஻௎ ൌ ߬ௌ௎ԡ෥࢛௔ௗ௩ԡଶ 

Here, ݄ is a characteristic element length. In [11], a 

systematic study comparing different definitions of 

݄was conducted, concluding that a length scale based 

on the minimal edge length of an element gives the best 

result in the case of high aspect ratio elements. For 

aspect ratios closer to one, results were comparable to 

other possible definitions (maximum edge length and 

edge length in the streamwise direction). This leads us 

to choose theminimum element edge length as our 

definition for ݄ . The parameters ܿଵ  and ܿଶ  are 

introduced in [12] and allow further control of the 

stabilization. Valuesܿଵ ൌ 1 and ܿଶ ൌ 4 correspond to 

the definitions in [10], while in [12] the authors choose 

4 ൑ ܿଵ ൑ 16 and ܿଶ ൌ 36. 

The advection velocity ෥࢛௔ௗ௩  is calculated using a 

Taylor series expansion: 

෥࢛௔ௗ௩ ൌ 2.1875 ࢛௡ െ 2.1875 ࢛௡ିଵ ൅

1.3125 ࢛௡ିଶ െ 0.3125 ࢛௡ିଷ                  (7) 

This technique allows us to linearize the equations 

without resorting to an iterative technique, thus solving 

only one linear system per time step, at the cost of 

storing the velocity for the previous 4 time steps for 

every node. 

In [2], the global linear system (3) is solved by 

directly applying the GMRES method. It is 

preconditioned either with algebraic multigrid or ILU 

factorization. There is no stability constraint for the 

time step if we set 0.5 ൑ ߠ ൑ 1, and the scheme is 

second order accurate in time when setting ߠ ൌ 0.5. 

Storing the coupled system is expensive, and 

depending on the mesh and the flow configuration the 

iterative method may converge slowly. 

An alternative to solving the complete system is to 

split it into separate linear systems for the velocity and 

the pressure. We follow the method proposed in 

[7].Introducing the velocity- and pressure differences 

between two time levels ࢛߂ and ݌߂, we can rewrite 

the momentum equation as a function of the 

acceleration ࢇ ൌ  : ݐ߂/࢛߂
ሺ ௨ܶ௨ ൅ ࢇ௨௨ሻܣݐ߂ߠ ൅ ݌߂௨௣ܣߠ ൌ െܣ௨௨࢛௡ െ  ௡݌௨௣ܣ

Defining כࢇ ൌ ࢇ ൅ ሺ ௨ܶ௨ ൅ ݌߂௨௣ܣߠ௨௨ሻିଵܣݐ߂ߠ  we 

obtain a linear system that can be solved for כࢇ: 
ሺ ௨ܶ௨ ൅ כࢇ௨௨ሻܣݐ߂ߠ ൌ െܣ௨௨࢛௡ െ  ௡݌௨௣ܣ
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The continuity equation is: 

൫ ௣ܶ௨ ൅ ࢇ௣௨൯ܣݐ߂ ൅ ݌߂௣௣ܣ ൌ െܣ௣௨࢛௡ െ  ௡݌௣௣ܣ

Using the definition of כࢇ, we can rewrite this into a 

linear system for the pressure difference݌߂ between 

two time steps: 

ቀ൫ ௣ܶ௨ ൅ ௣௨൯ሺܣݐ߂ ௨ܶ௨ ൅ ௨௣ܣߠ௨௨ሻିଵܣݐ߂ߠ െ ௣௣ቁܣ ݌߂

ൌ ௣ܶ௨כࢇ ൅ ௣௨ሺ࢛௡ܣ ൅ ሻכࢇݐ߂ ൅  ௡݌௣௣ܣ

Note that the system matrix for the pressure is the 

Schur complement of the velocity block in the original 

system. We can now first solve the linear system for 

כࢇ , then solve the ݌߂  system and finally get the 

acceleration from 

ࢇ ൌ כࢇ െ ሺ ௨ܶ௨ ൅  ݌߂௨௣ܣߠ௨௨ሻିଵܣݐ߂ߠ

So far, we have only solved the coupled system in a 

different way, algebraically equivalent to a direct 

solution. In addition to solving a separate linear system 

for the velocity and the pressure, we also need the 

inverse ሺ ௨ܶ௨ ൅  ௨௨ሻିଵ to construct the matrix forܣݐ߂ߠ

the pressure system. Doing this directly is not possible 

on a large mesh, so simplification is needed to obtain 

an efficient method. When we simplify steps in the 

algorithm, the result will no longer be identical to the 

solution of the coupled system, so we introduce an 

iterative algorithm that can be executed ܯ times each 

time step. The linear systems will be solved for the 

difference between two inner iterations ݉ and ݉ ൅ 1, 

i.e. ࢇ߂ ൌ ௠ାଵࢇ െ ௠ࢇ  and ݌߂௠ାଵ ൌ ௠ାଵ݌ െ ௠݌ . 

From this, we also have ࢛௠ ൌ ࢛௡ ൅ ௠ࢇݐ߂  and 

௠݌ ൌ ௡݌ ൅ ∑ ௜௠݌߂
௜ୀ଴ . The modified כࢇ is then: 

௠כࢇ ൌ ௠ࢇ ൅ ሺ ௨ܶ௨ ൅ ௨௣ܣߠ௨௨ሻିଵܣݐ߂ߠ ൬෍ ௜݌߂
௠

௜ୀ଴
൰ 

Filling this into the original system and using the 

definition of כࢇ yields: 

ሺ ௨ܶ௨ ൅ כࢇ߂௨௨ሻܣݐ߂ߠ

ൌ െܣ௨௨࢛௠ െ ௠݌௨௣ܣ

െ ሺ ௨ܶ௨ ൅ ௠ࢇ௨௨ሻܣݐ߂ߠ ൅ ௠ࢇݐ߂௨௨ܣ

൅ ሺ1 െ ௨௣ܣሻߠ ෍ ௜݌߂
௠

௜ୀ଴
 

For the continuity equation we start from: 

൫ ௣ܶ௨ ൅ ࢇ߂௣௨൯ܣݐ߂ ൅ ௣௣ܣ ൬෍ ௜݌߂
௠ାଵ

௜ୀ଴
൰

ൌ െܣ௣௨࢛௡ െ ௡݌௣௣ܣ െ ൫ ௣ܶ௨ ൅  ௠ࢇ௣௨൯ܣݐ߂

With ࢇ߂ ൌ כࢇ߂ െ ሺ ௨ܶ௨ ൅ ௠ାଵ݌߂௨௣ܣߠ௨௨ሻିଵܣݐ߂ߠ this 

becomes: 

ቀ൫ ௣ܶ௨ ൅ ௣௨൯ሺܣݐ߂ ௨ܶ௨ ൅ ௨௣ܣߠ௨௨ሻିଵܣݐ߂ߠ

െ ௣௣ቁܣ ௠ାଵ݌߂

ൌ ௣ܶ௨כࢇ߂ ൅ ௣௨ሺ࢛௠ܣ ൅ ሻכࢇ߂ݐ߂ ൅ ௠݌௣௣ܣ ൅ ௣ܶ௨ࢇ௠ 

With the problem formulated this way, we can now 

apply a predictor-multicorrector iterative scheme: 

 
Without simplifications to the systems, executing the 

iteration once will immediately provide the correct 

velocity- and pressure updates. 

The solution of the velocity system is difficult due to 

the advective terms. These terms have an important 

impact on the convergence rate of the iterative solvers 

and introduce a direct dependency of the matrix 

coefficients on the velocity. An easy fix is to drop the 

advection terms from the velocity system matrix, 

treating them explicitly (i.e. setting ߠ ൌ 0 for those 

terms).We assemble the simplified velocity matrices 

௨௨෪ܣ  and ௨ܶ௨෪ using the following expressions: 

௨ഢ௨ഢܣ
෫ ൌ න ሺߥ ൅ ߬஻௎ሻ

ఆ೐

ߘ ௨ܰ
ߘ் ௨ܰ݀ߗ௘ 

௨ഢ௨ണܣ
෫ ൌ න ߬஻௎

ఆ೐

ሺߘ ௨ܰሻ௜
்ሺߘ ௨ܰሻ௝݀ߗ௘ሺ݅ ് ݆ሻ 

௨ܶഢ௨ഢ
෫ ൌ න ௨ܰ

்
௨ܰ݀ߗ௘

ఆ೐

 

The system matrix of this simplified velocity system is 

now symmetric and much better conditioned, due to the 

Set ࢛଴ ൌ ࢛௡, ݌଴ ൌ ଴ࢇ ௡ and݌ ൌ 0 

for݉ ൌ 0 ݋ݐ ܯ െ 1do 

Solve כࢇ߂ system 

Solve ݌߂௠ାଵ system 

Compute ࢇ߂ 

Update ࢛௠ାଵ ൌ ࢛௠ ൅  ࢇ߂ݐ߂

Update ݌௠ାଵ ൌ ௠݌ ൅  ௠ାଵ݌߂

end for 
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removal of the advective terms. The coefficients only 

depend on the viscosity and ߬஻௎, so they do not vary 

much in time, especially if the time step is small. This 

allows us to reuse the same velocity matrix over a 

range of time steps, reducing the time required for 

assembly and preconditioner setup. 

For the pressure system, we first need an 

approximation for ሺ ௨ܶ௨ ൅  ௨௨ሻିଵ. As suggested inܣݐ߂ߠ

[7], the inverse of the lumped velocity mass matrix ܯ௅ 

is a good candidate, i.e. we sum all the elements of a 

row and then put that value on the diagonal, making the 

inverse trivial to compute. The same approximation is 

used in [10]. After this change, the pressure system 

matrix becomes: 

ቀ൫ ௣ܶ௨ ൅ ௅ܯ௣௨൯ܣݐ߂
ିଵܣߠ௨௣ െ  ௣௣ቁܣ

If we ignore the stabilization terms and apply partial 

integration to the pressure gradient term in the 

momentum equation, we have ܣ௨௣ ൌ െܣ௣௨
் , hinting 

that the structure of the pressure matrix and the Poisson 

problem are similar. This leads us to simplify the 

pressure matrix as follows: 

ቀ൫ ௣ܶ௨ ൅ ௅ܯ௣௨൯ܣݐ߂
ିଵܣߠ௨௣ െ ௣௣ቁܣ

ൎ െߠሺ߬௉ௌ ൅ ሻݐ߂ න ߘ ௣ܰ
ߘ் ௣ܰ݀ߗ௘

ఆ೐

 

This approximation is remarkably similar to the 

approximation of the Schurcomplement of the velocity 

block for reaction-dominated flows as described in [6]. 

We are indeed in the situation of reaction-dominated 

flows since the time term is large due to the small time 

steps under consideration. The validity of our 

approximation is further confirmed by the 

Taylor-Green test case. The resulting matrix is 

symmetric and only depends on the solution through 

the value of ߬௉ௌ.Numerical experiments show that the 

adjustment of ߬௉ௌ in the matrix has no effect on the 

accuracy, so we can reuse the same pressure matrix 

during the complete calculation. This opens up the 

possibility of using a direct solution method or reuse of 

the preconditioner. While the original matrix required a 

sparse matrix product, the simplification can be 

assembled on a per-element basis. This greatly 

simplifies the code and speeds up the assembly. This 

can be important in the case of deforming meshes or 

variable time steps, where the pressure matrix does 

change with each time step. 

3. Taylor-Green vortices 

As a first test case, we apply the method to the 

Taylor-Green periodic vortices, advected by a constant 

velocity field. The advantage of this test case is that it is 

a time dependent problem with an analytical solution in 

closed form. The velocity components as a function of 

spatial coordinates and time are: 

ݑ ൌ ܷ௔

െ ௦ܸ cos ቆ
ߨ
ܦ

ሺݔ െ ܷ௔ݐሻቇ sin ቆ
ߨ
ܦ

ሺݕ െ ௔ܸݐሻቇ ݁ିమഌഏమ

ವమ ௧ 

ݒ ൌ ௔ܸ

൅ ௦ܸ sin ቆ
ߨ
ܦ

ሺݔ െ ܷ௔ݐሻቇ cos ቆ
ߨ
ܦ

ሺݕ െ ௔ܸݐሻቇ ݁ିమഌഏమ

ವమ ௧ 

The pressure is: 

 

݌ ൌ െ ௦ܸ
ଶ

4
ቆcos ቆ

ߨ2
ܦ

ሺݔ െ ܷ௔ݐሻቇ

൅ cos ቆ
ߨ2
ܦ

ሺݕ െ ௔ܸݐሻቇቇ ݁ିరഌഏమ

ವమ ௧ 

The vorticity is given by: 

 

߱ ൌ
2 ௦ܸߨ

ܦ
cos ቆ

ߨ
ܦ

ሺݔ െ ܷ௔ݐሻቇ

ڄ cos ቆ
ߨ
ܦ

ሺݕ െ ௔ܸݐሻቇ ݁ିమഌഏమ

ವమ ௧ 

This flow field represents two-dimensional, periodic 

vortices with diameter ܦ  and initial maximal swirl 

velocity ௦ܸ , advected by the advection velocity 

ሺܷ௔, ௔ܸሻ, and dissipating due to the kinematic viscosity 

 We use the following values in our tests (based on .ߥ

ܦ :([2] ൌ 0.5  m, ௦ܸ ൌ 1  m/s, ܷ௔ ൌ 0.3  m/s, 

௔ܸ ൌ 0.2 m/s and ߥ ൌ 0.001  m2/s.The flow field is 

visualized in Fig.1, using contours of the dimensionless 

vorticity ߱/߱଴ and dimensionless time ݐ ௦ܸ ⁄ܦ2 . 



Janssens et al. / IJME, Vol. 3, Issue1, pp. 13-24, 2015 
 

18 

From these images, it is clear that the vortex centers 

move along the advection velocity vector. Viscosity 

redistributes the vorticity until it uniformly reaches 

zero everywhere in the domain, as indicated by the 

decrease in vorticity magnitude in the figures. 

For the numerical simulations, we initialize the flow 

with the analytical solution at time t = 0 s and set 

periodic boundary conditions in both directions. Since 

this determines the pressure only up to a constant, we 

impose the pressure in the center of the domain, setting 

it equal to the analytical solution at every time step. 

In a first test, we will determine the effect of the 

number of inner iterations ܯ, using a grid of 64x64 

quadrilaterals that are triangulated for the triangle 

element tests.In Fig. 2, the error of the segregated 

solution is compared to the fully coupled solution, 

defining the relative difference with the coupled 

solution as, for the x-component of the velocity: 

max
ఆ

௖ݑ| െ |௦ݑ

max
ఆ

௖ݑ| െ |௧௛ݑ
 

Here, ௖ݑ is the solution of the coupled system of 

equations, ݑ௦is the segregated solution and ݑ௧௛is the 

analytical solution. For ܯ ൌ 1  and at time 6, the 

difference between the segregated and the coupled 

solution is about 10 times greater than the error 

between the fully coupled solution and the analytical 

solution, i.e. the absolute error is an order of magnitude 

greater. When we increase the number of iterations to 

two, the difference between both methods is two orders 

of magnitudes smaller than the absolute error, i.e. the 

difference is negligible and increasing the number of 

iterations further is not necessary. The difference 

flattens off after 4 iterations. At the first time step (time 

0.004), the iterative technique converges towards the 

coupled solution as the number of iterations increases. 

Again, the difference with the coupled solution 

decreases with two orders of magnitude when using 

two iterations instead of one. We conclude from these 

observations that two inner iterations offer a good 

balance between computational cost and accuracy. 

This is no surprise: in [7] the authors point out that the 

term including the effect of the mass matrix on the 

acceleration in the right hand side of the velocity 

system only contributes from the second iteration 

onwards, since we initialize the acceleration to zero 

each time step. 

From Fig. 2, it is clear that the difference between 

the two methods is greater at time 6 than after the first 

time step. This effect is better illustrated in Fig. 3, 

where we have plotted the errorsmaxఆ|ݑ௖ െ  ௧௛|andݑ

maxఆ|ݑ௦ െ  ௧௛|as a function of time. Both errors reachݑ

Fig. 1  Contours of dimensionless vorticity, at dimensionless
time 0 (a) and 2.5 (b). 
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a maximum around time 10, and so does the difference 

between both methods. This difference between the 

segregated and coupled solution remains small, 

varying between 2 % and 4 % of the difference with the 

analytical solution. This confirms that two inner 

iterations suffice to reproduce the results of the fully 

coupled solution. 

Fig. 4 shows the error for a series of meshes with 

NxN quadrilaterals (triangulated for the triangle 

results). The time step was adapted to maintain a 

constant Courant number of 0.32 at the start of the 

simulation, using: ݐ߂ ൌ 0.256 ܰ⁄ .We calculate the 

error as the maximum of the absolute value of the 

difference with the analytical solution over the entire 

domain, taking the maximum of either component for 

the velocity error. The velocity error after one time step 

(dashed line) follows the second order slope, while the 

pressure error follows the first order slope. The errors 

at time 10 (i.e. near the maximum of Fig. 3) decrease 

with a slope between first and second order. These 

effects are due to the time stepping: if we lower the 

Courant number to 0.03, the pressures also follow the 

second order law, as illustrated in Fig. 4.The errors for 

the coupled and the segregated method overlap, further 

confirming the equivalence of both methods at the time 

steps considered here. 

Fig. 2  Comparison between the fully coupled solution of 
the linear system and the current method, as a function of 
the number of inner iterations and at two dimensionless 

times 0.004 (i.e. after one time step) and 6.0. 

Fig. 3  Maximum error over the domain for the 
x-component of the velocity, for triangles and quadrilaterals
and using the coupled and segregated solution method using

two inner iterations. 

Fig.4  Maximum norm of the error for the velocity vector 
(a) and the pressure (b), as a function of mesh size and with a
constant Courant number of 0.32. The dashed lines connect 
the errors after one time step, the solid lines those at time 10.
Plot (b) also shows pressure error for quadrilateral elements

computed at Courant number 0.03. 
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Fig. 5 shows the evolution of the maximum norm of 

the velocity error for increasing Courant numbers. The 

Courant number is computed here using the maximum 

velocity projection for all element edges. The 

segregated method becomes unstable when the Courant 

number reaches values close to 0.8, which is in line 

with the theoretical limits from [7]. Although we are 

using Crank-Nicolson time stepping, the errors in Fig. 

5 do not decrease along a second order slope. Further 

tests with the fully coupled scheme show that second 

order in time is only visible at Courant number 2 and 

higher. In [14], a similar effect is visible in the 

numerical tests and this is attributed to the spatial 

component of the error. 

4. Performance aspects 

In this section we assess the performance of the 

segregated method. We use the direct numerical 

simulation of plane channel flow as a basis for the 

different tests, limiting the computations to 100 time 

steps to reduce the computational overhead. This test 

fits the objectives of the current method perfectly, since 

a DNS requires small time steps due to the physics of 

the flow. The meshes used in the tests are based on 

those from [12] and [15], using a hexahedral mesh that 

is refined towards the walls. We note the mesh size in 

the NxxNyxNz format, where each Ni represents the 

number of nodes in the corresponding direction i(not 

counting periodic nodes twice). The streamwise 

direction corresponds to x, the wall-normal direction is 

y and z is the spanwise direction. Performance is 

measured on the following machines: 

 RMA cluster VKI cluster 

Processor type Xeon E5520 Opteron 6376 

Cores per node 8 64 

RAM per core 3 GB 4 GB 

Interconnect 1 Gb ethernet InfiniBand 

Nb. nodes 30 28 

 

The computationally expensive steps in the 

algorithm are the solution of the linear systems and the 

computation of the coefficients for the system matrices 

and right hand side vectors, i.e. the evaluation of the 

element integrals. For the fully coupled method, the 

matrix coefficients need to be recomputed each time 

step, since they depend on the advection velocity and 

only one linear system needs to be solved. For the 

segregated method, the matrix for the pressure system 

is constant for the whole simulation. The velocity 

matrix depends on the solution only through the ߬஻௎ 

stabilization parameter. This means that the matrix 

coefficients are also approximately constant. 

Surprisingly, this results in a linear increase of the 

solution time per time step, as shown by the dashed line 

in Fig. 6. We can eliminate this effect by recomputing 

the coefficients every 100 time steps, resulting in a 

constant solution time (solid line in Fig. 6). 

Since we mostly eliminated the matrix assembly 

from the computation, the cost for the segregated 

method is dominated by the solution of both linear 

systems and the computation of the right hand side 

coefficients. This work must be done every iteration, 

i.e. twice every time step in practice. Fig. 7 presents the 

scaling of the segregated method. The assembly 

operations follow the ideal scaling (i.e. half the time 

each time the number of cores is doubled) closely. This 

is to be expected, since this step does not depend on 

communication and only requires additional ghost 

elements as the number of mesh partitions is increased. 

The timing marked as “other” corresponds to some 

Fig. 5  Maximum norm of the error for the velocity vector 
as a function of Courant number on the 64x64 grid. 
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aspects of the computation that take a negligible 

amount of time, such as the update of the solution and 

the extrapolation of the velocity for the linearization. 

The matrix assemblies are also included here and 

confirmed to be negligible in time, since they are 

executed at most once every 100 steps. Most of the 

time is spent solving the linear systems. We solve the 

velocity system using the Conjugate Gradient (CG) 

method, preconditioned using ILU factorization. The 

scaling is not ideal, but better than the scaling for the 

pressure system, which we solve using CG 

preconditioned with algebraic multigrid (AMG). This 

no longer scales when moving from 256 to 512 cores, 

making the solution of the pressure system the 

dominant factor at 512 cores. 

For smaller problems, it is feasible to solve the 

pressure system using a direct method. Fig. 8 illustrates 

the effect on the timings for two different mesh sizes. 

The AMG timings are obtained using the same settings 

as before, while the MUMPS timings use the MUMPS 

parallel sparse direct solver [16] for the pressure 

system. Since the pressure matrix is constant, we only 

need to perform the expensive factorization once and 

can then apply this in all subsequent time steps. The 

small (32x65x32) and large (64x129x64) problems 

used 8 and 64 cores, respectively, thus keeping the 

workload per core constant. According to the ideal 

scaling law, the timings for the large and small 

problems should be identical, but especially on the 

RMA cluster the communication overhead becomes 

prohibitive for the large mesh. This is an effect of the 

1Gb Ethernet interconnect. The assembly operations - 

which do not require intensive communication - do 

follow the ideal scaling almost perfectly. 

The switch to MUMPS is very effective on the small 

problem: the solution time for the pressure system 

becomes negligible compared to the total timing, while 

it is the dominant factor when using AMG. The total 

solution time is nearly halved as a result. For the large 

problem, we see that the scaling for MUMPS is much 

Fig. 6  Average wall clock time per time step for a 
64x129x64 mesh on 64 cores on the RMA cluster. “No reset”

means one single velocity matrix assembly. “Reset 100” 
means one velocity matrix assembly every 100 time steps. 

Fig. 7  Strong scaling of the average wall clock time per 
time step for a 128x257x128 mesh on the VKI cluster. The 
RHS assembly timing comprises the sum of all coefficient 

computations for the right hand side vectors. 

Fig. 8  Comparison between Algebraic Multigrid (AMG) 
and a direct solver (MUMPS) for the pressure system. Left 
bars for the RMA cluster, right bars for the VKI cluster. 

Averages for 1000 time steps. 
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worse than AMG, resulting in very little benefit. On the 

RMA cluster, the initial factorization took 842s. Since 

we averaged the timing over 2000 iterations, there is 

still a contribution of 0.42s from the initial 

factorization in the average timing. This part will 

diminish as the number of iterations increases. On the 

VKI cluster the initial factorization only took 95s, 

illustrating the importance of communication in this 

step. As is typical for a direct method, the cost of the 

factorization increases non-linearly: on the small 

problem the timings were 5.3 s (RMA) and 6.6 s (VKI). 

For very large problems, the cost of the initial 

factorization becomes prohibitive, and the factorization 

itself can no longer be stored because it is much denser 

than the original matrix. The poor scaling of the 

application of the factorization is surprising, and might 

be due to our use of the Trilinos interface to access 

MUMPS. This interface also forbids the use of the 

symmetric solver, so better results should be possible 

by interfacing with MUMPS directly. 

Memory usage is dominated by the storage of the 

linear systems. For the coupled method, the memory 

required to store the sparse matrix can be computed as 

follows, using a structured hexahedral grid where 27 

nodes are adjacent to each other: 

ሺ27 nodes per row כ 4 variables כ 12 bytes ൅

4 bytesሻ כ ሺ4 equations כ  number of nodes) 

We assume double precision, i.e. 8 bytes per 

coefficient and 32 bits for integers, i.e. 4 bytes per 

integer to store the coefficient index and row size. For a 

mesh with 10 million nodes, this yields a storage cost 

of 52 GB. In the case of the segregated solver, two 

matrices need to be stored, but because each matrix is 

smaller the total size is less: 3.25 GB for the pressure 

system and 29.25 GB for the velocity system. The 

savings are modest, and when using a direct solver for 

the pressure the segregated solver will even use more 

memory than the coupled method. On modern 

hardware, such as the clusters used in this work, 

problems are typically distributed over a large number 

of CPUs with a sufficient amount of RAM to allow 

either method to be chosen. 

In a final test, we compare the timings per time step 

for the segregated and the coupled method on three 

different meshes, gradually finer in the wall-normal 

direction. The segregated solver uses the AMG method 

for the pressure system as described before. For the 

coupled method, we also use algebraic multigrid 

preconditioning, using the defaults optimized for 

advection-diffusion problems. The iterative solver is 

GMRES from the Belos package. Two sets of initial 

conditions were used: the laminar solution and a 

random disturbance of the laminar solution. The latter 

is typically used to initialize a DNS. Time steps were 

chosen to obtain a Courant number of around 0.15. 

Table 1 summarizes the results. All tests are carried 

out on 8 cores on the RMA cluster, so we expect the 

solution time to double each time the number of mesh 

nodes doubles. The “mesh scaling” factor in the table 

lists the ratio between the current time and the time on 

the previous mesh, and it is always above the ideal 

value of 2, with significantly higher values for the 

coupled method. For the segregated method, the 

initialcondition has little impact on the solution time, 

but for the coupled method the added randomness 

appears to double the solution time. As the mesh is 

refined, the coupled method can take up to 48 times as 

long as the segregated method, so for short time steps 

there is a clear benefit of using the segregated 

approach. 
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Table 1 Comparison of the average time per time step for the segregated and the coupled method. Mesh scaling is the time on 

the current mesh divided by the time on the previous mesh. All simulations are carried out on the RMA cluster on 8 cores. 

 

5. Conclusion and future work 

We have presented a segregated, semi-implicit 

solution method for the PSPG/SUPG stabilized 

incompressible Navier-Stokes equations, using a 

predictor-multicorrector scheme. Some simplifications 

to the linear systems were introduced, leading to a 

simpler problem at the cost of introducing a stability 

limit on the time step. The segregated method was 

shown to converge to the fully coupled solution in two 

inner iterations, based on tests using the Taylor-Green 

vortices. 

We analyzed the performance on a series of meshes 

for plane channel flow. The solution of the pressure 

system was identified as the most time consuming 

step in the algorithm. For small problems, direct 

solution of the pressure system can result in an 

important speed up, but this method appears to scale 

poorly. When compared to the fully coupled solution, 

the segregated solution has a clear benefit if the time 

step needs to be small (under the CFL limit) for 

physical reasons. 

In future work, other methods for a more efficient 

solution of the pressure system could be investigated. 

One option is to interface directly with the MUMPS 

solver, which would allow the use of the symmetric 

solver, thus halving the memory requirements. This 

would possibly also result in better scaling for the 

application of the factorization. 
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