
International Journal of Mechanics and Energy (IJME)

Vol. 3, Issue 1,2015, ISSN: 2286-5845

13

A semi-implicit scheme for the stabilized finite element

method for the incompressible Navier-Stokes equations

Bart Janssens1,Tamás Bányai2, Karim Limam3, Walter Bosschaerts1
1Royal Military Academy, Department of Mechanics. Avenue de Renaissance 30, 1000 Brussels, Belgium

2von Karman Institute for Fluid Dynamics, Chaussée de Waterloo 72, 1640 Rhode-St-Genèse, Belgium
3La Rochelle University, LaSIE, Avenue Michel Crépeau, 17042 La Rochelle Cedex 1, France

Abstract:We apply a predictor-multicorrector scheme to thePressure Stabilized and Streamline Upwind Petrov-Galerkin (PSPG and
SUPG) stabilized incompressible Navier-Stokes equations, solving separate systems for the velocity and pressure. The advective terms
are treatedexplicitly. The algorithm is tested against the analytical solution for the Taylor-Green vortices case and shown to be of
second order accuracy. We analyze the performance and compare with a fully coupled, implicit solution technique. The semi-implicit
predictor-multicorrector scheme proves to be advantageous when small time steps are required due to the flow physics.

Keywords: Finite element method, Incompressible flow, Predictor–corrector scheme

1. Introduction

The Galerkin finite element method has attractive

properties: it has second order accuracy in case of

linear shape functions and a rigorous mathematical

foundation, naturally supporting unstructured grids

over a wide variety of element types. However, due to

the central-difference type discretization, it is

inherently unstable when applied to the Navier-Stokes

equations. The Pressure Stabilized and Streamline

Upwind Petrov-Galerkin (PSPG and SUPG)

stabilizations overcome this problem while retaining

second order accuracy and allowing equal order

interpolation for the pressure and velocity [1].

In [2] these stabilizations are applied together with

an extrapolation of the velocity to linearize the

advection operator. With a Crank-Nicolson time

discretization, this method is second order accurate in

both time and space. A single linear system must be

solved at each time step, yielding a discrete solution for

the pressure and velocity at each node.

* Correspondingauthor:Bart Janssens
E-mail: bart.janssens@mil.be.

For three-dimensional problems, the number of

unknowns quickly reaches into the millions, imposing

the use of Krylov methods to solve the linear system.

For fast convergence, a preconditioner is required. We

can use algebraic multigrid [3], or one of the

specialized preconditioners available in literature

[4-6].The convergence rate of these algorithms often

degrades to some extent as the Reynolds number

increases or the mesh is refined. The cost per outer

Krylov iteration also increases, since most of the

specialized preconditioners rely on the solution of a

Poisson-like problem and a solution for the velocity

linear system. The preconditioned solution of the

coupled linear system imposes no restriction on the

time step, so it is effective as long as the physical

timescales of the flow are relatively large.

In the present work, we explore the situation where

the physical timescale of interest corresponds to

imposing a Courant number near unity. In [7] a

predictor-multicorrector scheme is used to solve the

linear system arising from the SUPG stabilized

equations in a segregated fashion, i.e. solving separate

equations for the velocity and the pressure while

optionally treating the diffusive and advective terms

Janssens et al. / IJME, Vol. 3, Issue1, pp. 13-24, 2015

14

explicitly. We apply this method to the PSPG/SUPG

stabilized equations with Crank-Nicolson time

stepping, but keep the advective term purely explicit.

The resulting scheme remains second order accurate in

time and space, but it imposes a time step restriction

due to the explicit treatment of the advection. The

objective of this paper is to describe the development

of the scheme and compare it with the existing coupled

method for some benchmark cases.

We first introduce the finite element formulation for

the fully coupled approach as it was presented in [2].

Next, we describe the transformation to a segregated,

semi-implicit scheme. The accuracy is then evaluated

using the Taylor-Green case. Finally, we run some

large-scale benchmarks to compare the performance of

the coupled and segregated approach before drawing

conclusions.

2. Numerical method

The governing equations for incompressible flow

are:

డ࢛

డ௧
൅ ሺ࢛ ڄ ሻ࢛ߘ ൅

࢛ሺఇ࢛ڄሻ

ଶ
൅ ݌ߘ െ ଶ࢛ߘߥ ൌ ૙ (1)

ߘ ڄ ࢛ ൌ 0 (2)

Here, ࢛is the velocity, ݌ is the kinematic pressure (i.e.

the pressure divided by the density), ݐ is the time andߥ

is the kinematic viscosity. We use the skew symmetric

formulation for the advection term in the momentum

equation for improved conservation of kinetic energy

[8]. To obtain the finite element formulation, we

multiply the equations with a set of weighting

functions, interpolate the unknowns between discrete

nodes using shape functions and integrate over the

domain. The weighting and shape functions are chosen

to be identical, yielding a Galerkin formulation. The

time derivative is approximated using the ߠ-method.

This procedure yields a discrete system, with an

unknown pressure and velocity at time level n+1 to be

computed at each node in the mesh. The global shape

functions are non-zero only in a node and its

surrounding elements. This means that the integrals can

be evaluated as a sum of integrals over these elements.

This global system can thus be written as the sum of N

element contributions:

∑ ቀ
ଵ

௱௧ ௘ܶ ൅ ௘ቁܣߠ ሺ࢞௘
௡ାଵ െ ࢞௘

௡ሻே
௘ୀଵ ൌ െܣ௘࢞௘

௡ (3)

The parameter ߠ controls the time stepping and should

be set to 1 for a forward Euler method and 0.5 for the

Crank-Nicolson scheme. The vector of unknowns at

the element level is laid out by grouping the nodal

values per unknown, i.e. for a 3D element with ݉ ൅ 1

nodes:

࢞௘
௡ ൌ ሾ݌଴

௡ ڮ ௠݌
௡ ሺݑ଴

௡ሻ଴ ڮ ሺݑ଴
௡ሻ௠ ଶݑሺ ڮ

௡ሻ௠ሿ

This results in the following block structure for the

matrices ܣ௘ and ௘ܶ:

௘ܣ ൌ ൤
௣௣ܣ ௣௨ܣ

௨௣ܣ ௨௨ܣ
൨ ൌ

ۏ
ێ
ێ
ێ
ۍ

௣௣ܣ ௣௨బܣ
௣௨భܣ

௣௨మܣ

௨బ௣ܣ ௨బ௨బܣ
௨బ௨భܣ

௨బ௨మܣ

௨భ௣ܣ ௨భ௨బܣ
௨భ௨భܣ

௨భ௨మܣ

௨మ௣ܣ ௨మ௨బܣ
௨మ௨భܣ

ے௨మ௨మܣ
ۑ
ۑ
ۑ
ې

 (4)

We now apply the stabilized finite element method to

equations (1) and (2) to obtain the following

expressions for each block:

௣௣ܣ ൌ න ߬௉ௌ
ఆ೐

ߘ ௣ܰ
ߘ் ௣ܰ݀ߗ௘

௣௨೔ܣ
ൌ න ൭ቆ ௣ܰ ൅

߬௉ௌ ෥࢛௔ௗ௩ߘ ௣ܰ

2
ቇ

்

ሺߘ ௨ܰሻ௜
ఆ೐

൅ ߬௉ௌ൫ߘ ௣ܰ൯
௜

்
෥࢛௔ௗ௩ߘ ௨ܰቇ ௘ߗ݀

௨೔௨ೕܣ
ൌ න ቆ߬஻௎ሺߘ ௨ܰሻ௜

ఆ೐

൅
1
2

ሺ෥࢛௔ௗ௩ሻ௜ሺ ௨ܰ ൅ ߬ௌ௎ ෥࢛௔ௗ௩ߘ ௨ܰሻቇ
்

ሺߘ ௨ܰሻ௝݀ߗ௘

௨೔௨೔ܣ
ൌ න ሺߘߥ ௨ܰ

ߘ் ௨ܰ
ఆ೐

൅ ሺ ௨ܰ ൅ ߬ௌ௎ ෥࢛௔ௗ௩ߘ ௨ܰሻ் ෥࢛௔ௗ௩ߘ ௨ܰሻ ௘ߗ݀ ൅ ௨೔௨ೕܣ

௨೔௣ܣ ൌ න ሺ ௨ܰ ൅ ߬ௌ௎ ෥࢛௔ௗ௩ߘ ௨ܰሻ்

ఆ೐

൫ߘ ௣ܰ൯
௜
 ௘ߗ݀

௣ܶ௨೔
ൌ න ߬௉ௌ൫ߘ ௣ܰ൯

௜

்

ఆ೐

௨ܰ݀ߗ௘

Janssens et al. / IJME, Vol. 3, Issue1, pp. 13-24, 2015

15

௨ܶ೔௨೔
ൌ ׬ ሺ ௨ܰ ൅ ߬ௌ௎ ෥࢛௔ௗ௩ߘ ௨ܰሻ்

௨ܰ݀ߗ௘ఆ೐
 (5)

Here, ௨ܰ and ௣ܰ are the shape functions for the

velocity and pressure, respectively. They are row

vectors of size ݉ ൅ 1 with coefficients depending on

the spatial coordinates. We use mapped coordinates so

the integrals can easily be evaluated numerically using

Gaussian quadrature. The indices ݅ and ݆ iterate over

the number of dimensions of the problem, indicating a

single component of a vector variable or a row of a

gradient matrix ܰߘ . The stabilization terms are

multiplied with their respective stabilization

coefficients ߬௉ௌ for the PSPG stabilization, ߬ௌ௎ for

the SUPG stabilization and ߬஻௎ for the bulk viscosity

term. The PSPG term allows the use of equal-order

interpolation for the velocity and the pressure. It

introduces a non-zero ܣ௣௣ block, consisting of the

Laplacian of the pressure. The SUPG stabilization

corresponds to upwinding in the streamwise direction,

i.e. the weight of upstream nodes is increased. The bulk

viscosity term is necessary for flows that are strongly

dominated by advection, and is sometimes called

“grad-div” stabilization [9] or the “least squares on

incompressibility constraint” [10].

The values for the stabilization parameters must be

chosen carefully: they should be large enough to obtain

the stabilizing effect, but if they are too large the

scheme becomes too dissipative and accuracy suffers.

We follow the definitions given in [10]:

߬ௌ௎ଵ ൌ
݄

2ԡ෥࢛௔ௗ௩ԡ

߬ௌ௎ଶ ൌ
ݐ߂
2ܿଵ

߬ௌ௎ଷ ൌ
௛మ

௖మఔ
 (6)

߬ௌ௎ ൌ ൬
1

߬ௌ௎ଵ
൅

1
߬ௌ௎ଶ

൅
1

߬ௌ௎ଷ
൰

ିଵ

߬௉ௌ ൌ ߬ௌ௎

߬஻௎ ൌ ߬ௌ௎ԡ෥࢛௔ௗ௩ԡଶ

Here, ݄ is a characteristic element length. In [11], a

systematic study comparing different definitions of

݄was conducted, concluding that a length scale based

on the minimal edge length of an element gives the best

result in the case of high aspect ratio elements. For

aspect ratios closer to one, results were comparable to

other possible definitions (maximum edge length and

edge length in the streamwise direction). This leads us

to choose theminimum element edge length as our

definition for ݄ . The parameters ܿଵ and ܿଶ are

introduced in [12] and allow further control of the

stabilization. Valuesܿଵ ൌ 1 and ܿଶ ൌ 4 correspond to

the definitions in [10], while in [12] the authors choose

4 ൑ ܿଵ ൑ 16 and ܿଶ ൌ 36.

The advection velocity ෥࢛௔ௗ௩ is calculated using a

Taylor series expansion:

෥࢛௔ௗ௩ ൌ 2.1875 ࢛௡ െ 2.1875 ࢛௡ିଵ ൅

1.3125 ࢛௡ିଶ െ 0.3125 ࢛௡ିଷ (7)

This technique allows us to linearize the equations

without resorting to an iterative technique, thus solving

only one linear system per time step, at the cost of

storing the velocity for the previous 4 time steps for

every node.

In [2], the global linear system (3) is solved by

directly applying the GMRES method. It is

preconditioned either with algebraic multigrid or ILU

factorization. There is no stability constraint for the

time step if we set 0.5 ൑ ߠ ൑ 1, and the scheme is

second order accurate in time when setting ߠ ൌ 0.5.

Storing the coupled system is expensive, and

depending on the mesh and the flow configuration the

iterative method may converge slowly.

An alternative to solving the complete system is to

split it into separate linear systems for the velocity and

the pressure. We follow the method proposed in

[7].Introducing the velocity- and pressure differences

between two time levels ࢛߂ and ݌߂, we can rewrite

the momentum equation as a function of the

acceleration ࢇ ൌ : ݐ߂/࢛߂
ሺ ௨ܶ௨ ൅ ࢇ௨௨ሻܣݐ߂ߠ ൅ ݌߂௨௣ܣߠ ൌ െܣ௨௨࢛௡ െ ௡݌௨௣ܣ

Defining כࢇ ൌ ࢇ ൅ ሺ ௨ܶ௨ ൅ ݌߂௨௣ܣߠ௨௨ሻିଵܣݐ߂ߠ we

obtain a linear system that can be solved for כࢇ:
ሺ ௨ܶ௨ ൅ כࢇ௨௨ሻܣݐ߂ߠ ൌ െܣ௨௨࢛௡ െ ௡݌௨௣ܣ

Janssens et al. / IJME, Vol. 3, Issue1, pp. 13-24, 2015

16

The continuity equation is:

൫ ௣ܶ௨ ൅ ࢇ௣௨൯ܣݐ߂ ൅ ݌߂௣௣ܣ ൌ െܣ௣௨࢛௡ െ ௡݌௣௣ܣ

Using the definition of כࢇ, we can rewrite this into a

linear system for the pressure difference݌߂ between

two time steps:

ቀ൫ ௣ܶ௨ ൅ ௣௨൯ሺܣݐ߂ ௨ܶ௨ ൅ ௨௣ܣߠ௨௨ሻିଵܣݐ߂ߠ െ ௣௣ቁܣ ݌߂

ൌ ௣ܶ௨כࢇ ൅ ௣௨ሺ࢛௡ܣ ൅ ሻכࢇݐ߂ ൅ ௡݌௣௣ܣ

Note that the system matrix for the pressure is the

Schur complement of the velocity block in the original

system. We can now first solve the linear system for

כࢇ , then solve the ݌߂ system and finally get the

acceleration from

ࢇ ൌ כࢇ െ ሺ ௨ܶ௨ ൅ ݌߂௨௣ܣߠ௨௨ሻିଵܣݐ߂ߠ

So far, we have only solved the coupled system in a

different way, algebraically equivalent to a direct

solution. In addition to solving a separate linear system

for the velocity and the pressure, we also need the

inverse ሺ ௨ܶ௨ ൅ ௨௨ሻିଵ to construct the matrix forܣݐ߂ߠ

the pressure system. Doing this directly is not possible

on a large mesh, so simplification is needed to obtain

an efficient method. When we simplify steps in the

algorithm, the result will no longer be identical to the

solution of the coupled system, so we introduce an

iterative algorithm that can be executed ܯ times each

time step. The linear systems will be solved for the

difference between two inner iterations ݉ and ݉ ൅ 1,

i.e. ࢇ߂ ൌ ௠ାଵࢇ െ ௠ࢇ and ݌߂௠ାଵ ൌ ௠ାଵ݌ െ ௠݌ .

From this, we also have ࢛௠ ൌ ࢛௡ ൅ ௠ࢇݐ߂ and

௠݌ ൌ ௡݌ ൅ ∑ ௜௠݌߂
௜ୀ଴ . The modified כࢇ is then:

௠כࢇ ൌ ௠ࢇ ൅ ሺ ௨ܶ௨ ൅ ௨௣ܣߠ௨௨ሻିଵܣݐ߂ߠ ൬෍ ௜݌߂
௠

௜ୀ଴
൰

Filling this into the original system and using the

definition of כࢇ yields:

ሺ ௨ܶ௨ ൅ כࢇ߂௨௨ሻܣݐ߂ߠ

ൌ െܣ௨௨࢛௠ െ ௠݌௨௣ܣ

െ ሺ ௨ܶ௨ ൅ ௠ࢇ௨௨ሻܣݐ߂ߠ ൅ ௠ࢇݐ߂௨௨ܣ

൅ ሺ1 െ ௨௣ܣሻߠ ෍ ௜݌߂
௠

௜ୀ଴

For the continuity equation we start from:

൫ ௣ܶ௨ ൅ ࢇ߂௣௨൯ܣݐ߂ ൅ ௣௣ܣ ൬෍ ௜݌߂
௠ାଵ

௜ୀ଴
൰

ൌ െܣ௣௨࢛௡ െ ௡݌௣௣ܣ െ ൫ ௣ܶ௨ ൅ ௠ࢇ௣௨൯ܣݐ߂

With ࢇ߂ ൌ כࢇ߂ െ ሺ ௨ܶ௨ ൅ ௠ାଵ݌߂௨௣ܣߠ௨௨ሻିଵܣݐ߂ߠ this

becomes:

ቀ൫ ௣ܶ௨ ൅ ௣௨൯ሺܣݐ߂ ௨ܶ௨ ൅ ௨௣ܣߠ௨௨ሻିଵܣݐ߂ߠ

െ ௣௣ቁܣ ௠ାଵ݌߂

ൌ ௣ܶ௨כࢇ߂ ൅ ௣௨ሺ࢛௠ܣ ൅ ሻכࢇ߂ݐ߂ ൅ ௠݌௣௣ܣ ൅ ௣ܶ௨ࢇ௠

With the problem formulated this way, we can now

apply a predictor-multicorrector iterative scheme:

Without simplifications to the systems, executing the

iteration once will immediately provide the correct

velocity- and pressure updates.

The solution of the velocity system is difficult due to

the advective terms. These terms have an important

impact on the convergence rate of the iterative solvers

and introduce a direct dependency of the matrix

coefficients on the velocity. An easy fix is to drop the

advection terms from the velocity system matrix,

treating them explicitly (i.e. setting ߠ ൌ 0 for those

terms).We assemble the simplified velocity matrices

௨௨෪ܣ and ௨ܶ௨෪ using the following expressions:

௨ഢ௨ഢܣ
෫ ൌ න ሺߥ ൅ ߬஻௎ሻ

ఆ೐

ߘ ௨ܰ
ߘ் ௨ܰ݀ߗ௘

௨ഢ௨ണܣ
෫ ൌ න ߬஻௎

ఆ೐

ሺߘ ௨ܰሻ௜
்ሺߘ ௨ܰሻ௝݀ߗ௘ሺ݅ ് ݆ሻ

௨ܶഢ௨ഢ
෫ ൌ න ௨ܰ

்
௨ܰ݀ߗ௘

ఆ೐

The system matrix of this simplified velocity system is

now symmetric and much better conditioned, due to the

Set ࢛଴ ൌ ࢛௡, ݌଴ ൌ ଴ࢇ ௡ and݌ ൌ 0

for݉ ൌ 0 ݋ݐ ܯ െ 1do

Solve כࢇ߂ system

Solve ݌߂௠ାଵ system

Compute ࢇ߂

Update ࢛௠ାଵ ൌ ࢛௠ ൅ ࢇ߂ݐ߂

Update ݌௠ାଵ ൌ ௠݌ ൅ ௠ାଵ݌߂

end for

Janssens et al. / IJME, Vol. 3, Issue1, pp. 13-24, 2015

17

removal of the advective terms. The coefficients only

depend on the viscosity and ߬஻௎, so they do not vary

much in time, especially if the time step is small. This

allows us to reuse the same velocity matrix over a

range of time steps, reducing the time required for

assembly and preconditioner setup.

For the pressure system, we first need an

approximation for ሺ ௨ܶ௨ ൅ ௨௨ሻିଵ. As suggested inܣݐ߂ߠ

[7], the inverse of the lumped velocity mass matrix ܯ௅

is a good candidate, i.e. we sum all the elements of a

row and then put that value on the diagonal, making the

inverse trivial to compute. The same approximation is

used in [10]. After this change, the pressure system

matrix becomes:

ቀ൫ ௣ܶ௨ ൅ ௅ܯ௣௨൯ܣݐ߂
ିଵܣߠ௨௣ െ ௣௣ቁܣ

If we ignore the stabilization terms and apply partial

integration to the pressure gradient term in the

momentum equation, we have ܣ௨௣ ൌ െܣ௣௨
் , hinting

that the structure of the pressure matrix and the Poisson

problem are similar. This leads us to simplify the

pressure matrix as follows:

ቀ൫ ௣ܶ௨ ൅ ௅ܯ௣௨൯ܣݐ߂
ିଵܣߠ௨௣ െ ௣௣ቁܣ

ൎ െߠሺ߬௉ௌ ൅ ሻݐ߂ න ߘ ௣ܰ
ߘ் ௣ܰ݀ߗ௘

ఆ೐

This approximation is remarkably similar to the

approximation of the Schurcomplement of the velocity

block for reaction-dominated flows as described in [6].

We are indeed in the situation of reaction-dominated

flows since the time term is large due to the small time

steps under consideration. The validity of our

approximation is further confirmed by the

Taylor-Green test case. The resulting matrix is

symmetric and only depends on the solution through

the value of ߬௉ௌ.Numerical experiments show that the

adjustment of ߬௉ௌ in the matrix has no effect on the

accuracy, so we can reuse the same pressure matrix

during the complete calculation. This opens up the

possibility of using a direct solution method or reuse of

the preconditioner. While the original matrix required a

sparse matrix product, the simplification can be

assembled on a per-element basis. This greatly

simplifies the code and speeds up the assembly. This

can be important in the case of deforming meshes or

variable time steps, where the pressure matrix does

change with each time step.

3. Taylor-Green vortices

As a first test case, we apply the method to the

Taylor-Green periodic vortices, advected by a constant

velocity field. The advantage of this test case is that it is

a time dependent problem with an analytical solution in

closed form. The velocity components as a function of

spatial coordinates and time are:

ݑ ൌ ܷ௔

െ ௦ܸ cos ቆ
ߨ
ܦ

ሺݔ െ ܷ௔ݐሻቇ sin ቆ
ߨ
ܦ

ሺݕ െ ௔ܸݐሻቇ ݁ିమഌഏమ

ವమ ௧

ݒ ൌ ௔ܸ

൅ ௦ܸ sin ቆ
ߨ
ܦ

ሺݔ െ ܷ௔ݐሻቇ cos ቆ
ߨ
ܦ

ሺݕ െ ௔ܸݐሻቇ ݁ିమഌഏమ

ವమ ௧

The pressure is:

݌ ൌ െ ௦ܸ
ଶ

4
ቆcos ቆ

ߨ2
ܦ

ሺݔ െ ܷ௔ݐሻቇ

൅ cos ቆ
ߨ2
ܦ

ሺݕ െ ௔ܸݐሻቇቇ ݁ିరഌഏమ

ವమ ௧

The vorticity is given by:

߱ ൌ
2 ௦ܸߨ

ܦ
cos ቆ

ߨ
ܦ

ሺݔ െ ܷ௔ݐሻቇ

ڄ cos ቆ
ߨ
ܦ

ሺݕ െ ௔ܸݐሻቇ ݁ିమഌഏమ

ವమ ௧

This flow field represents two-dimensional, periodic

vortices with diameter ܦ and initial maximal swirl

velocity ௦ܸ , advected by the advection velocity

ሺܷ௔, ௔ܸሻ, and dissipating due to the kinematic viscosity

 We use the following values in our tests (based on .ߥ

ܦ :([2] ൌ 0.5 m, ௦ܸ ൌ 1 m/s, ܷ௔ ൌ 0.3 m/s,

௔ܸ ൌ 0.2 m/s and ߥ ൌ 0.001 m2/s.The flow field is

visualized in Fig.1, using contours of the dimensionless

vorticity ߱/߱଴ and dimensionless time ݐ ௦ܸ ⁄ܦ2 .

Janssens et al. / IJME, Vol. 3, Issue1, pp. 13-24, 2015

18

From these images, it is clear that the vortex centers

move along the advection velocity vector. Viscosity

redistributes the vorticity until it uniformly reaches

zero everywhere in the domain, as indicated by the

decrease in vorticity magnitude in the figures.

For the numerical simulations, we initialize the flow

with the analytical solution at time t = 0 s and set

periodic boundary conditions in both directions. Since

this determines the pressure only up to a constant, we

impose the pressure in the center of the domain, setting

it equal to the analytical solution at every time step.

In a first test, we will determine the effect of the

number of inner iterations ܯ, using a grid of 64x64

quadrilaterals that are triangulated for the triangle

element tests.In Fig. 2, the error of the segregated

solution is compared to the fully coupled solution,

defining the relative difference with the coupled

solution as, for the x-component of the velocity:

max
ఆ

௖ݑ| െ |௦ݑ

max
ఆ

௖ݑ| െ |௧௛ݑ

Here, ௖ݑ is the solution of the coupled system of

equations, ݑ௦is the segregated solution and ݑ௧௛is the

analytical solution. For ܯ ൌ 1 and at time 6, the

difference between the segregated and the coupled

solution is about 10 times greater than the error

between the fully coupled solution and the analytical

solution, i.e. the absolute error is an order of magnitude

greater. When we increase the number of iterations to

two, the difference between both methods is two orders

of magnitudes smaller than the absolute error, i.e. the

difference is negligible and increasing the number of

iterations further is not necessary. The difference

flattens off after 4 iterations. At the first time step (time

0.004), the iterative technique converges towards the

coupled solution as the number of iterations increases.

Again, the difference with the coupled solution

decreases with two orders of magnitude when using

two iterations instead of one. We conclude from these

observations that two inner iterations offer a good

balance between computational cost and accuracy.

This is no surprise: in [7] the authors point out that the

term including the effect of the mass matrix on the

acceleration in the right hand side of the velocity

system only contributes from the second iteration

onwards, since we initialize the acceleration to zero

each time step.

From Fig. 2, it is clear that the difference between

the two methods is greater at time 6 than after the first

time step. This effect is better illustrated in Fig. 3,

where we have plotted the errorsmaxఆ|ݑ௖ െ ௧௛|andݑ

maxఆ|ݑ௦ െ ௧௛|as a function of time. Both errors reachݑ

Fig. 1 Contours of dimensionless vorticity, at dimensionless
time 0 (a) and 2.5 (b).

Janssens et al. / IJME, Vol. 3, Issue1, pp. 13-24, 2015

19

a maximum around time 10, and so does the difference

between both methods. This difference between the

segregated and coupled solution remains small,

varying between 2 % and 4 % of the difference with the

analytical solution. This confirms that two inner

iterations suffice to reproduce the results of the fully

coupled solution.

Fig. 4 shows the error for a series of meshes with

NxN quadrilaterals (triangulated for the triangle

results). The time step was adapted to maintain a

constant Courant number of 0.32 at the start of the

simulation, using: ݐ߂ ൌ 0.256 ܰ⁄ .We calculate the

error as the maximum of the absolute value of the

difference with the analytical solution over the entire

domain, taking the maximum of either component for

the velocity error. The velocity error after one time step

(dashed line) follows the second order slope, while the

pressure error follows the first order slope. The errors

at time 10 (i.e. near the maximum of Fig. 3) decrease

with a slope between first and second order. These

effects are due to the time stepping: if we lower the

Courant number to 0.03, the pressures also follow the

second order law, as illustrated in Fig. 4.The errors for

the coupled and the segregated method overlap, further

confirming the equivalence of both methods at the time

steps considered here.

Fig. 2 Comparison between the fully coupled solution of
the linear system and the current method, as a function of
the number of inner iterations and at two dimensionless

times 0.004 (i.e. after one time step) and 6.0.

Fig. 3 Maximum error over the domain for the
x-component of the velocity, for triangles and quadrilaterals
and using the coupled and segregated solution method using

two inner iterations.

Fig.4 Maximum norm of the error for the velocity vector
(a) and the pressure (b), as a function of mesh size and with a
constant Courant number of 0.32. The dashed lines connect
the errors after one time step, the solid lines those at time 10.
Plot (b) also shows pressure error for quadrilateral elements

computed at Courant number 0.03.

Janssens et al. / IJME, Vol. 3, Issue1, pp. 13-24, 2015

20

Fig. 5 shows the evolution of the maximum norm of

the velocity error for increasing Courant numbers. The

Courant number is computed here using the maximum

velocity projection for all element edges. The

segregated method becomes unstable when the Courant

number reaches values close to 0.8, which is in line

with the theoretical limits from [7]. Although we are

using Crank-Nicolson time stepping, the errors in Fig.

5 do not decrease along a second order slope. Further

tests with the fully coupled scheme show that second

order in time is only visible at Courant number 2 and

higher. In [14], a similar effect is visible in the

numerical tests and this is attributed to the spatial

component of the error.

4. Performance aspects

In this section we assess the performance of the

segregated method. We use the direct numerical

simulation of plane channel flow as a basis for the

different tests, limiting the computations to 100 time

steps to reduce the computational overhead. This test

fits the objectives of the current method perfectly, since

a DNS requires small time steps due to the physics of

the flow. The meshes used in the tests are based on

those from [12] and [15], using a hexahedral mesh that

is refined towards the walls. We note the mesh size in

the NxxNyxNz format, where each Ni represents the

number of nodes in the corresponding direction i(not

counting periodic nodes twice). The streamwise

direction corresponds to x, the wall-normal direction is

y and z is the spanwise direction. Performance is

measured on the following machines:

 RMA cluster VKI cluster

Processor type Xeon E5520 Opteron 6376

Cores per node 8 64

RAM per core 3 GB 4 GB

Interconnect 1 Gb ethernet InfiniBand

Nb. nodes 30 28

The computationally expensive steps in the

algorithm are the solution of the linear systems and the

computation of the coefficients for the system matrices

and right hand side vectors, i.e. the evaluation of the

element integrals. For the fully coupled method, the

matrix coefficients need to be recomputed each time

step, since they depend on the advection velocity and

only one linear system needs to be solved. For the

segregated method, the matrix for the pressure system

is constant for the whole simulation. The velocity

matrix depends on the solution only through the ߬஻௎

stabilization parameter. This means that the matrix

coefficients are also approximately constant.

Surprisingly, this results in a linear increase of the

solution time per time step, as shown by the dashed line

in Fig. 6. We can eliminate this effect by recomputing

the coefficients every 100 time steps, resulting in a

constant solution time (solid line in Fig. 6).

Since we mostly eliminated the matrix assembly

from the computation, the cost for the segregated

method is dominated by the solution of both linear

systems and the computation of the right hand side

coefficients. This work must be done every iteration,

i.e. twice every time step in practice. Fig. 7 presents the

scaling of the segregated method. The assembly

operations follow the ideal scaling (i.e. half the time

each time the number of cores is doubled) closely. This

is to be expected, since this step does not depend on

communication and only requires additional ghost

elements as the number of mesh partitions is increased.

The timing marked as “other” corresponds to some

Fig. 5 Maximum norm of the error for the velocity vector
as a function of Courant number on the 64x64 grid.

Janssens et al. / IJME, Vol. 3, Issue1, pp. 13-24, 2015

21

aspects of the computation that take a negligible

amount of time, such as the update of the solution and

the extrapolation of the velocity for the linearization.

The matrix assemblies are also included here and

confirmed to be negligible in time, since they are

executed at most once every 100 steps. Most of the

time is spent solving the linear systems. We solve the

velocity system using the Conjugate Gradient (CG)

method, preconditioned using ILU factorization. The

scaling is not ideal, but better than the scaling for the

pressure system, which we solve using CG

preconditioned with algebraic multigrid (AMG). This

no longer scales when moving from 256 to 512 cores,

making the solution of the pressure system the

dominant factor at 512 cores.

For smaller problems, it is feasible to solve the

pressure system using a direct method. Fig. 8 illustrates

the effect on the timings for two different mesh sizes.

The AMG timings are obtained using the same settings

as before, while the MUMPS timings use the MUMPS

parallel sparse direct solver [16] for the pressure

system. Since the pressure matrix is constant, we only

need to perform the expensive factorization once and

can then apply this in all subsequent time steps. The

small (32x65x32) and large (64x129x64) problems

used 8 and 64 cores, respectively, thus keeping the

workload per core constant. According to the ideal

scaling law, the timings for the large and small

problems should be identical, but especially on the

RMA cluster the communication overhead becomes

prohibitive for the large mesh. This is an effect of the

1Gb Ethernet interconnect. The assembly operations -

which do not require intensive communication - do

follow the ideal scaling almost perfectly.

The switch to MUMPS is very effective on the small

problem: the solution time for the pressure system

becomes negligible compared to the total timing, while

it is the dominant factor when using AMG. The total

solution time is nearly halved as a result. For the large

problem, we see that the scaling for MUMPS is much

Fig. 6 Average wall clock time per time step for a
64x129x64 mesh on 64 cores on the RMA cluster. “No reset”

means one single velocity matrix assembly. “Reset 100”
means one velocity matrix assembly every 100 time steps.

Fig. 7 Strong scaling of the average wall clock time per
time step for a 128x257x128 mesh on the VKI cluster. The
RHS assembly timing comprises the sum of all coefficient

computations for the right hand side vectors.

Fig. 8 Comparison between Algebraic Multigrid (AMG)
and a direct solver (MUMPS) for the pressure system. Left
bars for the RMA cluster, right bars for the VKI cluster.

Averages for 1000 time steps.

Janssens et al. / IJME, Vol. 3, Issue1, pp. 13-24, 2015

22

worse than AMG, resulting in very little benefit. On the

RMA cluster, the initial factorization took 842s. Since

we averaged the timing over 2000 iterations, there is

still a contribution of 0.42s from the initial

factorization in the average timing. This part will

diminish as the number of iterations increases. On the

VKI cluster the initial factorization only took 95s,

illustrating the importance of communication in this

step. As is typical for a direct method, the cost of the

factorization increases non-linearly: on the small

problem the timings were 5.3 s (RMA) and 6.6 s (VKI).

For very large problems, the cost of the initial

factorization becomes prohibitive, and the factorization

itself can no longer be stored because it is much denser

than the original matrix. The poor scaling of the

application of the factorization is surprising, and might

be due to our use of the Trilinos interface to access

MUMPS. This interface also forbids the use of the

symmetric solver, so better results should be possible

by interfacing with MUMPS directly.

Memory usage is dominated by the storage of the

linear systems. For the coupled method, the memory

required to store the sparse matrix can be computed as

follows, using a structured hexahedral grid where 27

nodes are adjacent to each other:

ሺ27 nodes per row כ 4 variables כ 12 bytes ൅

4 bytesሻ כ ሺ4 equations כ number of nodes)

We assume double precision, i.e. 8 bytes per

coefficient and 32 bits for integers, i.e. 4 bytes per

integer to store the coefficient index and row size. For a

mesh with 10 million nodes, this yields a storage cost

of 52 GB. In the case of the segregated solver, two

matrices need to be stored, but because each matrix is

smaller the total size is less: 3.25 GB for the pressure

system and 29.25 GB for the velocity system. The

savings are modest, and when using a direct solver for

the pressure the segregated solver will even use more

memory than the coupled method. On modern

hardware, such as the clusters used in this work,

problems are typically distributed over a large number

of CPUs with a sufficient amount of RAM to allow

either method to be chosen.

In a final test, we compare the timings per time step

for the segregated and the coupled method on three

different meshes, gradually finer in the wall-normal

direction. The segregated solver uses the AMG method

for the pressure system as described before. For the

coupled method, we also use algebraic multigrid

preconditioning, using the defaults optimized for

advection-diffusion problems. The iterative solver is

GMRES from the Belos package. Two sets of initial

conditions were used: the laminar solution and a

random disturbance of the laminar solution. The latter

is typically used to initialize a DNS. Time steps were

chosen to obtain a Courant number of around 0.15.

Table 1 summarizes the results. All tests are carried

out on 8 cores on the RMA cluster, so we expect the

solution time to double each time the number of mesh

nodes doubles. The “mesh scaling” factor in the table

lists the ratio between the current time and the time on

the previous mesh, and it is always above the ideal

value of 2, with significantly higher values for the

coupled method. For the segregated method, the

initialcondition has little impact on the solution time,

but for the coupled method the added randomness

appears to double the solution time. As the mesh is

refined, the coupled method can take up to 48 times as

long as the segregated method, so for short time steps

there is a clear benefit of using the segregated

approach.

Janssens et al. / IJME, Vol. 3, Issue1, pp. 13-24, 2015

23

Table 1 Comparison of the average time per time step for the segregated and the coupled method. Mesh scaling is the time on

the current mesh divided by the time on the previous mesh. All simulations are carried out on the RMA cluster on 8 cores.

5. Conclusion and future work

We have presented a segregated, semi-implicit

solution method for the PSPG/SUPG stabilized

incompressible Navier-Stokes equations, using a

predictor-multicorrector scheme. Some simplifications

to the linear systems were introduced, leading to a

simpler problem at the cost of introducing a stability

limit on the time step. The segregated method was

shown to converge to the fully coupled solution in two

inner iterations, based on tests using the Taylor-Green

vortices.

We analyzed the performance on a series of meshes

for plane channel flow. The solution of the pressure

system was identified as the most time consuming

step in the algorithm. For small problems, direct

solution of the pressure system can result in an

important speed up, but this method appears to scale

poorly. When compared to the fully coupled solution,

the segregated solution has a clear benefit if the time

step needs to be small (under the CFL limit) for

physical reasons.

In future work, other methods for a more efficient

solution of the pressure system could be investigated.

One option is to interface directly with the MUMPS

solver, which would allow the use of the symmetric

solver, thus halving the memory requirements. This

would possibly also result in better scaling for the

application of the factorization.

Acknowledgement

The software developed in this work is part of the

Coolfluid 3 framework, freely available under LGPL

v3 license at http://coolfluid.github.com. We thank the

Coolfluid 3 development team for the many hours of

work and helpful discussions, without which this work

would not have been possible. In particular: Tiago

Quintino for laying out the basic framework; Willem

Deconinck for the work on the mesh structure; and

Quentin Gasper for the work on the GUI.

References

[1] Tezduyar, T. E.; Mittal, S.; Ray, S. & Shih, R.
Incompressible flow computations with stabilized bilinear
and linear equal-order-interpolation velocity-pressure
elements, Computer Methods in Applied Mechanics and
Engineering, 95(1992), 221-242

[2] Bányai, T.; VandenAbeele, D. &Deconinck, H. A fast
fully-coupled solution algorithm for the unsteady
incompressible Navier-Stokes equations, Conference on
Modelling Fluid Flow (CMFF'06), (2006)

[3] Gee, M. W.; Siefert, C. M.; Hu, J. J.; Tuminaro, R. S.
&Sala, M. G. ML 5.0 smoothed aggregation user’s guide,
Sandia National Laboratories, Tech. Rep. SAND2006 -
2649 (2006)

[4] Elman, H. C.; Howle, V. E.; Shadid, J. N. &Tuminaro, R.
S. A parallel block multi-level preconditioner for the 3D

 Segregated Coupled

 Time (࢚࢙) Mesh scaling Time (࢚ࢉ) Mesh scaling ࢚ࢉ/࢚࢙

32x65x32 1.44 s - 7.64 s - 5.31

32x129x32 4.78 s 3.32 35.46 s 4.64 7.42

32x257x32 12.26 s 2.57 277.96 s 7.84 22.67

32x65x32 random 1.70 s - 15.26 s - 8.98

32x129x32 random 3.60 s 2.12 66.00 s 4.33 18.35

32x257x32 random 11.99 s 3.33 575.30 s 8.72 47.98

Janssens et al. / IJME, Vol. 3, Issue1, pp. 13-24, 2015

24

incompressible Navier-Stokes equations, Journal of
Computational Physics, 187 (2003), 504-523

[5] urRehman, M.; Vuik, C. & Segal, G. A comparison of
preconditioners for incompressible Navier-Stokes solvers,
International Journal for Numerical Methods in Fluids, 57
(2008), 1731

[6] Heister, T. &Rapin, G. Efficient augmented
Lagrangian-type preconditioning for the Oseen problem
using Grad-Div stabilization International Journal for
Numerical Methods in Fluids,71 (2013), 118-134

[7] Brooks, A. N. & Hughes, T. J. Streamline
upwind/Petrov-Galerkin formulations for convection
dominated flows with particular emphasis on the
incompressible Navier-Stokes equations, Computer
methods in applied mechanics and engineering, 32 (1982),
199-259

[8] Zang, T. A. On the rotation and skew-symmetric forms for
incompressible flow simulations Applied Numerical
Mathematics, 7 (1991), 27-40

[9] Braack, M.; Burman, E.; John, V. & Lube, G. Stabilized
finite element methods for the generalized Oseen problem,
Computer methods in applied mechanics and engineering,
196 (2007), 853-866

[10] Tezduyar, T. &Sathe, S. Stabilization parameters in SUPG
and PSPG formulations, Journal of computational and
applied mechanics, 4 (2003), 71-88

[11] Mittal, S. On the performance of high aspect ratio
elements for incompressible flows,Comput. Methods
Appl. Mech. Engrg., 188 (2000), 269-287

[12] Trofimova, A. V.; Tejada-Martinez, A. E.; Jansen, K. E.
&Lahey, R. T. Direct numerical simulation of turbulent
channel flows using a stabilized finite element method,
Computers & Fluids, 38 (2009), 924-938

[13] Elman, H.; Howle, V.; Shadid, J.; Shuttleworth, R.
&Tuminaro, R. A taxonomy and comparison of parallel
block multi-level preconditioners for the incompressible
Navier--Stokes equations, Journal of Computational
Physics, 227 (2008), 1790-1808

[14] Codina, R.; Principe, J.; Guasch, O. &Badia, S. Time
dependent subscales in the stabilized finite element
approximation of incompressible flow problems,
Computer Methods in Applied Mechanics and
Engineering, 196 (2007), 2413-2430

[15] Moser, R. D.; Kim, J. & Mansour, N. N.Direct numerical

simulation of turbulent channel flow up to Reத ൌ 590,
Physics of Fluids, 11 (1999), 943-94

[16] Amestoy, P. R.; Duff, I. S.; L’Excellent, J.-Y. &Koster, J.
MUMPS: a general purpose distributed memory sparse
solver Applied Parallel Computing. New Paradigms for
HPC in Industry and Academia, 2001, 121-130

