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Abstract: In this study, we develop a robust ANN technique to predict cutting force components during hard turning of an AISI 52100 
steel using CBN cutting tool. The training network is performed on 20 pairs of input-output experimental dataset where cutting 
parameters and workpiece hardness are taken as the input dataset. Back-propagation training is performed by using Bayesian 
Regularization in combination with Levenberg-Marquardt algorithm. The optimal network architecture is determined after several 
simulations by MATLAB Neural Networks Toolbox and it is consisting of 8 neurons in hidden layer. The developed model was 
verified with other experimental test data not used in training; for this purpose, the maximum average MAPE value of 11.79 % was 
obtained for the cutting forces prediction. 
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1. Introduction 

Hard machining processes produces high cutting 

forces and temperatures that affect cutting process, 

such as dynamic stability, tool wear, workpiece surface 

integrity, geometrical tolerances and machining times. 

Cutting forces are factors that manufacturers must be 

able to control to ensure better performances. Modeling 

of cutting forces is one of the major problems in metal 

cutting theory. Many machining parameters influence 

greatly on cutting forces so it is quite difficult to 

develop a proper theoretical model to describe 

efficiently the machining process. 

The Artificial Neural Network (ANN) approach is 

routinely considered as an accurate and powerful tool 

for modeling of machining processes. 

 

 
* Corresponding author: Makhfi Souâd 
E-mail: s_makhfi@univ-tiaret.dz. 

The capacity of ANNs to make nonlinear 

relationships in a relatively efficient manner has 

motivated some researchers for modeling much 

process such as turning, milling and drilling. A large 

number of applications of ANN models to predict 

cutting forces are also reported in literature [1-5]. 

Szecsi [6] developed an approach for modeling 

cutting forces, feed-forward multilayer neural network 

trained by Back Propagation (BP) error algorithm. The 

training network is performed by experimental 

machining data. 

Zuperl and Cus [7, 8] developed supervised ANN 

approach to estimate forces generated during end 

milling process. They have found that radial basis 

network require more neurons than standard 

feed-forward neural network with BP learning rule, but 

conceiving of radial basis neural network lasts only a 

part of time necessary for training of feed-forward 

network. 
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Hao et al. [9] introduced a model for Self-Propelled 

Rotary Tool (SPRT) cutting forces prediction using 

ANN. Two models are presented of determining the 

connection weights by BP algorithm and hybrid of 

Genetic Algorithm (GA) with BP. 

Another approach is used by Aykut et al. [10] to 

predicted cutting forces as function of cutting 

parameters for face milling of satellite 6 using an ANN. 

The training of the network is performed using Scaled 

Conjugate Gradient (SCG) feed-forward BP algorithm. 

In recent studies, Makhfi et al. [11] proposed 

multilayer feed-forward ANN with BP training by 

Levenberg–Marquardt algorithm to predict cutting 

force components in hard turning. The best network 

architecture is extracted by calculating a mean square 

error and regression coefficient. The developed model 

network was verified with other experimental test data 

not used in training. The percentage test error is less 

than 15 %. 

In this work, an ANN technique is proposed to 

predict cutting force components in hard turning of an 

AISI 52100 bearing steel using CBN cutting tool. 

Workpiece hardness HRc (MPa) and cutting 

parameters such as speed Vc (m/min), feed-rate         

f (mm/rev) and dept-of-cut ap (mm) are taken as input 

dataset of the ANN model while cutting force 

components such as cutting-force Ft (N), feed-force Fa 

(N) and radial-force Fr ( N) are the output dataset.  

Figure 1 shows the cutting parameters and the 

cutting force components in turning process.  

 
Fig. 1  Cutting force components in turning process 

The architecture of the neural network model is 

described as follows.  

2. Neural network model 

The neural network approach is an effective 

technique based on the statistical regression. It can be 

used in various fields of engineering for modeling 

complex relationships which are difficult to describe 

by utilizing physical models. 

An artificial neural network consists of simple 

processors called neurons interconnected. This 

hierarchical network structure has an input vector 

receiving input data and an output layer which sends 

final information to users. In middle stand hidden 

layers which have no direct contact with the 

environment. The input-output dataset for our ANN 

model are illustrated in Figure 2. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2  Multilayer feed-forward ANN architecture 

The mathematical principle of the neuron is shown 

in Figure 3. 

 

 

 

 

 

Fig. 3  Mathematical model of neuron 
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The training of the ANN is performed on 20 pairs of 

input-output experimental dataset as shown on Table 1. 

Table 1  Training dataset [12] 

Their generalization capacity are evaluated on 5 

further pairs of input-output test dataset (see Table 2) 

that were not been used in training dataset.  

Table 2  Testing dataset [12] 

Test 

no.  
Cutting parameters 

Experimental 

forces 

 

HRc 

(MPA) 

Vc 

(m/min) 

f 

(mm/rev) 

ap 

(mm) 

Fa 

(N) 

Fr 

(N) 

Ft 

(N) 

1 45 150 0.15 0.2 42 115 136 
2 50 150 0.15 0.2 46 139 137 
3 52 200 0.10 0.2 36 95 96 
4 54 150 0.10 0.2 32 91 94 
5 56 100 0.10 0.2 33 81 96 

Notice that the utilized ANN model consists of 

multilayer feed-forward: input, hidden and output 

layers. The selection of the training algorithm, 

activation functions in the hidden layer and output 

layer, number of hidden layers and neurons in hidden 

layer are very important to obtain the best prediction 

results. Detailed information concerning ANNs can be 

found in [13]. Using double hidden layer has shown 

neither advantage over single hidden layer [14]. Before 

training the network, the original values which are the 

set of input-target vectors are normalized in the range 

of -1 to 1 for efficient processing by the networks. 

Back-propagation by Bayesian Regularization in 

combination with Levenberg–Marquardt algorithm is 

employed for training neural networks. Since, it has 

proved to be an excellent universal approximator of 

non-linear functions [15, 16]. 

The basic goal in training is to minimize the overall 

error of the network between target data and network 

output data during training, and then the best network 

structure was determined [14-17]. The training is 

stopped when the validation error reaches a minimum 

value, once the network training is successfully 

finished. 

The optimal network architecture is obtained from a 

sigmoid activation function in the hidden layer and a 

linear activation function in output layer. These 

activation functions give the outputs of the neuron. In 

the training process, weights and biases of the network 

are initialized to small random values to avoid sharp 

saturation in the activation functions. The BP training 

methodology used for training neural networks is 

summarized below. 

Refer to the architecture of ANN given by Figure 2, 

the output response is calculated as follows: 

s f (We b )= +                  (1) 

The performance evaluation of the optimum network 

architecture is determined by overall calculated 

statistical error values as SSE (Sum Squared Error) and 

SSW (Sum Squared Weights) under MATLAB Neural 

Networks Toolbox for the ANNs approaches between 

target data and network output data during training and 

testing. Additionally, to find out the optimal network 

architecture, linear regression coefficient R     

(equation 2) and Mean Absolute Percentage Error 

Test 
no. 

 Cutting parameters Experimental 
forces 

 
HRc Vc 

(m/min) 
f 

(mm/rev) 
ap 

(mm) 
Fa Fr Ft 

 
(MPa) (N) (N) (N) 

1 45 100 0.1 0.2 56 104 128 
2 45 150 0.08 0.2 28 69 75 
3 45 150 0.1 0.4 82 129 174 
4 45 150 0.2 0.38 40 120 151 
5 50 100 0.1 0.2 41 111 106 
6 50 150 0.2 0.2 58 193 168 
7 50 200 0.1 0.2 36 97 94 
8 52 50 0.1 0.2 44 103 117 
9 52 100 0.1 0.2 40 97 91 
10 52 150 0.1 0.2 38 102 98 
11 52 250 0.1 0.2 37 97 95 
12 52 300 0.1 0.3 59 112 135 
13 54 100 0.1 0.2 34 85 96 
14 54 150 0.1 0.3 57 115 131 
15 54 150 0.1 0.4 83 142 172 
16 54 150 0.15 0.2 40 110 128 
17 54 200 0.1 0.2 35 91 92 
18 56 50 0.1 0.2 51 141 121 
19 56 150 0.1 0.2 30 75 86 
20 56 250 0.1 0.2 33 78 93 
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MAPE (3) between ANN prediction and experimental 

values are used to evaluate the statistical performance 

of the networks for training and testing phases. 

Q

k 1

Q Q
2 2

k 1 k 1

( c( k ) c )( s( k ) s )
R

( c( k ) c ) ( s( k ) s )

=

= =

− −
=

− −

∑

∑ ∑
   (2) 

Were Q is the number of cutting conditions. c and 

s are mean target and output values. 

c s
MAPE .100%

s

−=          (3) 

The number of neurons in the hidden layers is varied 

in different experiments in training and is found with 

statistical error values. The optimal network 

architecture is determined after several simulations by 

MATLAB Neural Networks Toolbox. 

3. Results and Discussions 

In order to define the best architecture, a various 

number of neurons in hidden layer have been tested, 

from 2 to 20 with step of 2. 

To evaluate the accuracy of the selected structure, 

cutting force components are finally evaluated for 5 

additional cutting conditions that are not used for 

training the network but that are in the same range as 

those used for training. To find the optimal ANN four 

representative criteria are adopted for each structure 

and collected in Table 3. 

Table 3  Statistical error values 

ANN 

 architectures 
SSE SSW 

R 

Training 

R 

Testing 

4-2-3 3.55 30.8 0.895 0.982 
4-4-3 0.89 81.7 0.975 0.988 
4-6-3 0.11 135 0.997 0.978 
4-8-3 0.05 141 0.999 0.978 
4-10-3 0.06 134 0.998 0.983 
4-12-3 0.06 132 0.998 0.981 
4-14-3 0.05 137 0.999 0.984 
4-16-3 0.05 136 0.999 0.983 
4-18-3 0.05 137 0.999 0.984 
4-20-3 0.06 132 0.998 0.981 

The evolution of SSE value as a function of SSW 

value is plotted on Figure 4. The BR/LM algorithm 

during training converges if the SSE and the SSW are 

relatively constant over several iterations; the error of 

the network is minimized and then the best network 

architectures are selected. 

A convergence area can be noticed as the number of 

neurons in hidden layer reaches 8. From this result, the 

best structure is chosen in this area where SSE is 

slightly close to 0 and SSW is between 132 and 141. 

 

Fig. 4  Decrease of SSE during training of different neural 

networks 

The index R of the training and testing are used in 

this analysis to judge the training and testing 

performances. It can also be seen from Table 3 that 

increasing the number of neurons from 10 to 20 has no 

significant improvement on the performances of the 

network. The network architecture consisting of 8 

neurons in hidden layer is chosen as the optimum ANN 

model. 

Figure 5 illustrates a graphical comparison between 

experimental and predicted cutting forces.  

 
Fig. 5  Correlation between experimental and predicted 

cutting forces 

Focus ANN architectures 
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Table 4 gives a numerical comparison between 

experimental and predicted cutting force components. 

Table 4  Comparison between experimental and predicted 

values of cutting forces 

Test 

no. 

Experimental 

cutting forces 

Predicted 

cutting forces 
MAPE (%) 

 
Fa 
(N) 

Fr 
(N) 

Ft 
(N) 

Fa 
(N) 

Fr 
(N) 

Ft 
(N) 

Fa Fr Ft 

1 56 104 128 55 105 128 1.79 0.96 0.00 

2 28 69 75 28 69 76 0.00 0.00 1.33 

3 82 129 174 82 129 174 0.00 0.00 0.00 

4 40 120 151 40 120 151 0.00 0.00 0.00 

5 41 111 106 42 112 105 2.44 0.90 0.94 

6 58 193 168 58 192 168 0.00 0.52 0.00 

7 36 97 94 36 96 93 0.00 1.03 1.06 

8 44 103 117 45 102 115 2.27 0.97 1.71 

9 40 97 91 38 96 98 5.00 1.03 7.69 

10 38 102 98 37 102 94 2.63 0.00 4.08 

11 37 97 95 37 97 96 0.00 0.00 1.05 

12 59 112 135 59 113 135 0.00 0.89 0.00 

13 34 85 96 35 88 95 2.94 3.53 1.04 

14 57 115 131 58 114 131 1.75 0.87 0.00 

15 83 142 172 83 142 172 0.00 0.00 0.00 

16 40 110 128 40 111 127 0.00 0.91 0.78 

17 35 91 92 35 91 92 0.00 0.00 0.00 

18 51 141 121 50 140 121 1.96 0.71 0.00 

19 30 75 86 30 75 87 0.00 0.00 1.16 

20 33 78 93 33 78 93 0.00 0.00 0.00 

Average MAPEs 1.039 0.616 1.042 

As expected, the developed ANN model gives 

precise results for the prediction of cutting force 

components used in training; average MAPEs of    

1.039 %, 0.616 % and 1.042 % are respectively noted 

on Fa, Fr and Ft. 

Table 5 illustrates cutting conditions used to test the 

developed model as well as the corresponding 

experimental and predicted cutting force components. 

Table 5  Comparison between experimental and predicted 

values in testing 

Test 

no. 
Experimental forces Predicted forces 

 
Fa 
(N) 

Fr 
(N) 

Ft 
(N) 

Fa 
(N) 

Fr 
(N) 

Ft 
(N) 

1 42 115 136 48 102 141 
2 46 139 137 55 144 148 
3 36 95 96 39 104 96 
4 32 91 94 33 82 89 
5 33 81 96 36 101 97 

Average MAPEs values of Fa, Fr and Ft are given in 

Table 6. 

Table 6  MAPE values between network predictions and 

experimental values in testing 

MAPE (%) 

Fa Fr Ft 

14.29 11.30 3.68 
19.57 3.60 8.03 
8.33 9.47 0.00 
3.13 9.89 5.32 
9.09 24.69 1.04 

10.88 11.79 3.61 

The average MAPEs of 10.88 %, 11.79 % and   

3.61 % are respectively noted on Fa, Fr and Ft. 

4. Conclusions 

The objective of this study is to develop a robust 

approach for prediction of cutting force components in 

hard turning of AISI 52100 bearing steel using CBN 

cutting tool as functions of cutting conditions. 

ANN training is performed on an experimental 

machining dataset of 20 cutting conditions and then the 

numerical model accuracy is evaluated on a test dataset 

of 5 values not used in training. Back-propagation 

training is performed by using Bayesian Regularization 

in combination with Levenberg- Marquardt algorithm. 

A sigmoid activation function is chosen in hidden layer 

and a linear one in output layer. Five criteria are used to 

evaluate the efficiency of each result: SSE, SSW, linear 

regression coefficient R at the training and testing, and 

MAPE between ANN predictions and experimental 

values. A various number of neurons in hidden layer 

are tested from 2 to 20 with step of 2. It is noticed that 

the algorithm converges when this number reaches 8. 

An excellent agreement is found between 

experimental and numerical predictions dataset for the 

20 cutting conditions used in training and the 5 cutting 

conditions used in testing data. Finally, the accuracy of 

the developed ANN model is in good agreement with 

that obtained in literature [7, 8, 10 and 11]. 
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