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Abstract: Study of buoyancy driven convection of thermo-dependent a shear-thinning power-law fluid confined in a square cavity, 

submitted to cross uniform heat fluxes is conducted numerically using a finite difference method. The combined effects of the ratio 

between the cross heat fluxes and the thermo-dependency parameter on the flow and thermal fields, and the resulting heat transfer 

are examined and discussed. 
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1. Introduction 

1 Thermal buoyancy convection is a flow resulting 

from density variations within a non-isothermal fluid 

under the gravity effect. Such a phenomenon is of 

importance in various domains, which attracted many 

worldwide researchers, through the decades, to 

investigate it in many geometrical configurations and 

under various boundary conditions. Useful literature 

review can be found in the book by Gebhart et al. [1], 

respectively, where most of the fluids considered are 

of Newtonian behavior. 

On the other hand, given the obvious relevance to 

various manufacturing and processing industries 

dealing with industrial applications, such as 

papermaking, oil drilling, slurry transporting, food 

processing, polymer engineering and so on, the 

studies number reported on natural convection 
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involving non-Newtonian fluids has been increased 

during the last two decades [2], but owing to their 

complex rheological behavior and their particular 

isothermal or non-isothermal flow conditions more 

investigations are to be undertaken in this area.  

Another challenging problem is the dependence of 

the rheological properties of these fluids on the 

temperature. To our best knowledge, most of the 

reported studies on natural convection in 

non-Newtonian fluids ignore such an aspect. This can 

be a serious assumption, since in many cases this 

effect has a significant influence on heat transfer [3]. 

Therefore, the goal of the present study is to 

contribute to a better understanding of the 

thermo-dependence effects on buoyancy convection 

heat transfer in such media. 
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2. Mathematical formulation and solution 
procedure 

2.1 Problem statement and viscosity model  

The geometry under consideration is sketched in 

Fig. 1 It consists of a two-dimensional square 

enclosure of size HH ′×′ subjected to cross uniform 

densities of heat flux, q' and bq'. 

 

 

 

 

 

         

 

 

 
Fig. 1. Sketch of the geometry and coordinates system 

The non-Newtonian fluids considered here are 

those whose rheological behaviors can be approached 

by the power-law model, due to Ostwald-de Waele, 

which, in terms of laminar effective viscosity, can be 

written as follows: 
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 The two empirical parameters Tn and Tk , 

appearing in Eq. (1), are the flow behavior and 

consistency indices, respectively. They are, in general, 

functions of the temperature, but in most of cases the 
temperature-dependence of Tn  can be ignored 

( )nnT =  since it is weak compared to that of Tk  

[3,4], which is described by the Frank-Kamenetski 

exponential law [5]: 

)(1 rTTc
T kek ′−′−=  (2) 

reflecting the viscosity diminution with the 

temperature, where c1 is an exponent related to the 

flow energy activation and the universal gas constant, 
and rT ′  is a reference temperature. 

 Note that for 1=n  the behavior is Newtonian 

and the consistency is just the viscosity. For 

10 << n , the effective viscosity decreases with the 

amount of deformation and the behavior is 

shear-thinning. Conversely, for 1>n , the viscosity 

increases with the amount of shearing, which implies 

that, the fluid behavior is shear-thickening. 

2.2 Governing equations and boundary conditions.  

 On the basis of the assumptions commonly 

adopted in natural convection problems and using the 

characteristic scales H ′ , ,2 αH ′  ,H ′α  ,2H ′α  

λHq ′′  and α, which correspond respectively to 

length, time, velocity, vorticity, temperature and 

stream function, the dimensionless governing 

equations for Boussinsq-temperature-dependent 

viscosity fluids, written in terms of vorticity, Ω, 

temperature, T, and stream function, ψ, are as follows: 
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and 

ux ′′,

vy ′′,
  

H ′

H ′
q′ q′
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For the present problem, the appropriate 

non-dimensional boundary conditions are: 

01=+
∂
∂===

x

T
ψvu   1  and   0 for  =x  (9) 

0=+
∂
∂=== b

y

T
ψvu  1  and  0 for  =y  (10) 

 Note that the major disadvantage of this 

formulation lies in the fact that Ω is unknown at the 

boundaries. To overcome such a difficulty, the Woods 

formulation has been adopted for stability and 

accuracy reasons [6]. 

2.3 Governing parameters 

 In addition to the flow behaviour index, n, three 

other dimensionless parameters appear in the 

governing equations. These are the Pearson, Prandtl 

and Rayleigh numbers defined, respectively, as:  
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 The Pearson number [7], which is a new 

dimensionless quantity taking place in this study, 

measures the effect of temperature change on the 

effective viscosity. 

2.4 Heat transfer 

 The steady solution has been used to calculate 

the average Nusselt number in the horizontal and 

vertical directions, respectively, defined as: 
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where vT∆  is the average temperature difference 

between the two vertical walls and hT∆  is the 

average temperature difference between the two 

horizontal walls. 

2.5 Heatlines formulation  

 The visualization of the paths followed by the 

heat flow through the enclosure requires the use of the 

heatlines concept, which consists of lines of constant 

heat function, H, that are defined, according to 

Kimura and Bejan [8], from the following equations 
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whose derivation, with respect to x and y, and 

combination give rise to  
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 To obtain the boundary conditions associated 

with Eq. (15), an integration of Eq. (14), along the 

four cavity walls, is necessary, which gives: 
0for   x     )0,0(),0( == HyH   (16) 
1y for   x   - )1,0()1,(x == HH  (17) 

1for   x     )1,(1),(1 == HyH   (18) 
0y for   x   -1 )0,(1)0,(x =+= HH  (19) 

 Finally, the solution of Eq. (15) yields the values 

of H, in the computational domain, whose contour 

plots provide the heatline patterns. Note that only the 

differences between the values of H are required 

instead of its intrinsic ones, which offers the 
possibility to choose 0)0,0( =H as an arbitrary 

reference value for H. 

2.6 Solution procedure 

 The two-dimensional governing equations have 

been discretized using the second order central finite 

difference methodology with a regular mesh size. The 

integration of equations (3) and (4) has been 

performed with the Alternating Direction Implicit 

method (ADI), originally used for Newtonian fluids 

and successfully experimented for non-Newtonian 
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power-law fluids [9-11]. To satisfy the mass 

conservation, Eq. (5) has been solved by a Point 

Successive Over Relaxation method (PSOR) with an 

optimum relaxation factor calculated by the Frankel 

formula [6]. A grid of 81×81 has been required for 

obtaining adequate results. At each time step, δt, 

which has been chosen between 710− and 
410− (depending on the values of the parameters b and 

m), the convergence criterion 
4

,

1
,

,
,
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, 10−++ <− ∑∑

ji

k
ji
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k
ji

k
ji ψψψ  has been satisfied 

for ψ , where k
jiψ ,  is the value of the stream 

function at the node ( )ji,  for the kth iteration level. 

3. Results and discussion 

 As was reported in the past by [11], the 

convection is rather insensitive to Pr variations, 

provided that this parameter is large enough as it is the 

case for the non-Newtonian fluids and for a large 

category of fluids having a Newtonian behavior. 

Therefore, Pr is not considered as an influencing 

parameter in this study and the simulations are 

conducted with ∞→P
r

, i.e. by neglecting the inertia 

terms on the left hand side of Eq. (3) owing to their 

negligible contribution. To examine the cross fluxes 

and the thermo-dependency effects, some results, 

corresponding to b = 0, 0.2, 0.5, 0.7 and 1, m = 0 and 

m = 10, n = 0.6 and Ra = 5×10³, are presented and 

discussed. 

 Hence, as can be seen from Fig. 2, displaying 

streamlines (left), isotherms (middle) and heatlines 

(right), the flow is, in general, unicellular and 

clockwise, but loses its symmetry with an increasing 

m for all the values of  b. Also, the streamlines 

become more crowded in the region neighboring the 

left upper corner, which means that the flow is 

intensified as a result of the viscosity decrease in such 

a region, giving rise to a stagnation zone which tends 

to be reduced near the right lower corner and to be 

extended next to the upper one with an increasing b, 

while for m = 0, the effect of b is such that the 

streamlines become almost parallel to the central part 

of each wall. 

 
Fig. 2. Streamlines (left), isotherms (medium) and 

heatlines(right ) for 310.5=Ra , 6.0=n  and  0=m (black 

solid line),  10=m (red dashdot line) and various value of 

b. 

 As for the isotherms, they seem to be closely 

spaced and less distorted in the stagnation region 

when m passes from 0 to 10, depending on b, whose 

increase leads to their rotation in the 

counter-clockwise direction. 

b=1.0 

b=0.2 

b=0.5 

b=0.7 

b=0.0 
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 On the other hand, in order to have a microscopic 

description of the heat transfer process, which is 

different from the conventional Nusselt number that 

describes macroscopically such a phenomenon, a 

heatlines analysis is required. Hence, with comparison 

to the iso-consistent case ( 0=m ), the heatlines 

corresponding to the case m = 10 present more 

distortion, which indicates that the path followed by 

the heat flow to reach the cold wall is more 

complicated in the rheological sub-layer. Therefore, 

the heat transfer is expected to be deteriorated in such 

a situation. Like the isotherms, an increase of b leads 

to a deviation of the heatlines in the counterclockwise 

direction whatever the value of m. 

b
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Fig. 3. Evolution of the average horizontal Nusselt number 
with b, for Ra = 5.103, n = 0.6, m = 0 and m = 10.  

Moreover, Fig. 3, in which are depicted the 
variations of hNu , shows that this quantity decrease 

with b whatever the value of m. In addition, for a 

given value of b, the same figure indicates a 

degradation of heat transfer in the horizontal direction 

with m. On the other hand, it can be seen, from Fig. 4, 

that there exists a critical value of b (bc) 

corresponding to infinite value of vNu ( 0=∆ hT ) and 

around which the sign of vNu changes. An increase of 

m anticipates bc.  
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Fig. 4. Evolution of the average temperature of horizontal 

walls with b, for 310.5=Ra , 6.0=n , 0=m and 10=m . 
 

4. Conclusion 

 A numerical investigation of steady thermal 

convection in a square enclosure, filled with 

shear-thinning power-law fluids and submitted to 

cross uniform heat fluxes, is performed. The 

exponential model, due to Frank-Kamenetski, for the 

viscosity variation with the temperature, is used. The 

study is focused particularly on combined effects of 

the ratio between the cross heat fluxes and the 

thermo-dependency parameter on the flow and 

thermal fields, and the resulting heat transfer. It 

emerges that the thermo-dependent behavior affects 

natural convection heat transfer depending on the 

proportion of the cross heat fluxes. 
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