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Abstract: A numerical study of the instabilities is realized for 2D incompressible, isothermal and plane jet. The eulerian numerical 

finite volume method is used. Numerical parameters and boundary conditions are optimized for the studied configuration. This study 

was operated for moderate Reynolds numbers. The flow is perturbated at the entry of the nozzle. The excitation frequency is a 

harmonic or sub-harmonic of the natural instability. The instability amplification depends on the excitation frequency. A response 

mode inherent to the shear flows was detected. The vortex energy is amplified allowing to know their sinuous or varicose behavior.  

The vortex dissociation and pairing phenomena are highlighted. 
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1. Introduction 

The study focuses on the instabilities development in 

a two-dimensional, isothermal and incompressible jet 

flow. The eulerian numerical finite volume method is 

used. The range of moderate Reynolds numbers between 

100 and 1000. A simulation series is performed in 

order to characterize the vortex structures and their 

development. The disturbance technique is frequently 

used to highlight the instability mechanism. A 

sinusoidal excitation is imposed at the inlet of the jet. 

The response modes are thus determined and the 

phenomena of detachment and vortex pairing are 

highlighted. This study seeks to compare our results 

with those obtained by Ho and Huang [1] for the case 

of a mixing layer. A relationship was established 

between the excitation frequency and the response one 

of the flow. The consequences of this excitation on the 

evolution of vortex structures are determined.  

Hussain and Thompson [2] have demonstrated that 

the imposed excitations have a limited impact on 
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average velocities but act on the fluctuations. They 

distinguish zones in terms of the excitation frequency. 

These authors show that there is no effect on the flow 

when the forcing frequency is more than twice greater 

than or lower than the natural frequency. The effect is 

to stabilize the frequency in this interaction range 

mainly for multiples or sub-multiples of this natural 

frequency. These properties will be discussed in the 

present paper. 

2. Geometry and numerical parameters 

Fig. 1. Studied configuration and boundary conditions. 
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The domain of study is the plane free jet. His 

dimensions are LxD=20x6. The total length L of the 

domain is in the longitudinal direction. The height of 

the nozzle at the entry is H= 1 (Fig. 1). The flow is 

incompressible isothermal and considered as 

two-dimensional. This corresponds to the conditions 

that have been found by Faghani et al. [3] and Meyer 

et al. [4] in an experimental study at moderate 

Reynolds numbers. The range of moderate Reynolds 

numbers has been probed (100≤Re≤1000). Unless 

explicitly specified, all the numerical runs were 

performed keeping the same numerical parameters: 

The mesh size used for most simulations is 400x120, 

the time step was chosen 10-2 and the test of 

convergence is ensured for a precision 10-7. To 

understand the phenomena of vortex pairing, the study 

at the natural frequency of instability will be 

processed, then the perturbation method is used. A 

sinusoidal excitation of the following form is imposed 

at the inlet of the jet: 

 [ ]0 0(0, , ) ( ,0) 1 sin(2 )eU y t U y f tβ π= +      (1) 

where β is the excitation amplitude optimized at the 

value 0.025 and fe is the frequency of variable 

excitation. U0 is the mean velocity at the inlet or axial 

velocity: 
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The selected excitation frequency fe is a multiple or a 

sub multiple of the natural frequency of instability fn. 

The instability amplification depending on the 

excitement frequency is determined.
 

3. Initial conditions  

Bickley [5] has determined the velocity profile of a 

jet resulting from an infinitely long channel in a fluid 

at rest, the expression is:  

            2
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where U is the axial velocity and b represents the 

growth rate. This case has been treated theoretically 

by Schlichting [6]. Andrade [7] experimentally 

confirmed this behavior for a jet resulting from a 

channel of finite dimension. The experimental of Sato 

[8] are in agreement with the theoretical results for 

Reynolds numbers less than 100. In his theoretical 

study
 
Nolle [9] proposes a more realistic family of 

profiles than the bickley one which the form is: 
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where n is an entire.              

These profiles are particularly large near the jet axis 

(Fig. 2). The case n = 1 corresponds to the Bickley 

profile (Bickley [5]). For n ≥ 2 the shape of the 

velocity tends to the uniform square case. 

 
Fig. 2. Comparison of velocity profiles at the inlet 

 

Three initial conditions for the streamwise velocity 

are tested to validate the numerical simulations 

corresponding to uniform profile, Poiseuille profile 

type and profile form ramp (Fig. 3). These velocity 

profiles are imposed from the input to the output of 

the jet and for all the height of the nozzle. In the rest 

of the domain, the velocity is zero. On the jet axis, the 

initial longitudinal velocity is equal to the unit. The 

initial transverse component is considered zero in all 

the domain. The square initial profile does not allow 

the jet to ease. The axial velocity in all the jet is 

practically equal to the input velocity (Fig. 3a). The 

growth rate of the jet is significant. The velocity near 

lateral boundaries is not negligible. These behaviors 

can be explained by the non-physical character of the 
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initial condition. The initial profiles of Poiseuille or 

ramp type give very similar effects (Fig. 3b). A 

decrease of the axial velocity is more marked for the 

Poiseuille profile, supposed to be the closest to the 

physical reality. Sato [8] realized an experiment 

showing that the distribution of the mean velocity in 

the laminar region of a jet depends on the initial 

condition.  

 

 

 

Fig. 3. Velocity vector field for three initial conditions, 

(Re=500; grid: 400x120; t=120): (a) uniform profile; (b) 

Poiseuille profile; (c) ramp profile 

4. Boundary conditions 

The Fig. 4 represents the velocity vector fields for 

five boundary conditions noted obc1, obc2, obc3, 

obc4, obc5, indicated in the Fig. 1 for the last time 

step. The profiles broaden out to reach the lateral 

boundaries and accurately describe the status of a free 

jet flow, particularly those related to conditions 

(obc1). The other conditions affect the flow, and 

especially perturbations occur at the exit border. The 

output condition imposed in (obc1) seems to be the 

most adequate to the physical problem. It allows the 

evacuation of the flow. For these reasons, the group of 

boundary conditions (obc1) was adopted in this study.  

These boundary conditions (obc1) are such that: at 

the entry of the jet U takes the value to the initial 

condition in the nozzle throughout the simulation, and 

zero value on the walls. The lateral velocity V is zero 

on all this border. On the two lateral boundaries, we 

impose a Dirichlet condition for the longitudinal 

velocity and a Neumann condition on the transverse 

velocity. This coupling between the Dirichlet and 

Neumann conditions allows the training by the lateral 

borders supposed free. In fact, this boundary which 

limits the computational domain is not really physical. 

At the output of the jet Neumann condition is applied 

to the two velocity components. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 4. Velocity vector field for five boundary conditions  

(Re = 500) 
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5. Natural jet  

5.1 Jet half-width 

The half-width of the jet is conventionally defined 

by b = y (0.5Uaxe). The Fig. 5 show the evolution of 

the growth rate of the jet b/H dimensionless by the 

width H of the nozzle, depending on the Reynolds 

numbers, for different stations of the jet. Near the 

entry this characteristic varies slightly and remains 

practically constant. The jet width is not very affected. 

However, downstream of the flow, it is low for 

Reynolds numbers less than 300 with a fast decay. 

The jet takes the same form towards the exit for high 

Reynolds numbers. Sato [8] showed that the 

development of the jet width is progressive and 

becomes directly proportional to the longitudinal 

distance x. 

Fig. 5. Natural jet: jet half-width 

5. 2 Selection of the dominant frequency 

The instabilities development is highly related to 

viscosity. The instability frequency increases with the 

Reynolds number (Fig. 6). Diffusive effects are 

considerable for low Reynolds and therefore the 

instability period is high. These diffusive effects 

become negligible at high Reynolds and therefore the 

instability frequency increases. 

 

 

 

 

 

 

Fig. 6. Natural jet: instability frequency versus Reynolds 

number 

The excitation at the natural frequency (fe=fn) shows 

the existence of a preferred mode to the instability 

wave. The response frequency is equal to the forcing 

one. The temporal evolution of the velocity has a 

sinusoidal character at Re=100. The signals and the 

energy spectra are represented in the Fig. 7. The 

frequency of the most intense peak corresponds to the 

response frequency fr=0.07. There are other small 

amplitude peaks in the interaction zone. The excitation 

effect, particularly at the natural frequency, is to show 

more clearly the sub-harmonic frequencies i.e to mark 

clearly the vortex pairing. 

6. Selection of response modes  

Fig. 7. Temporal evolution of the transverse velocity v and 

corresponding spectrum for different frequencies, (x=1; 

y=3; Re=100) 

A simulation series is performed in order to 

highlight the process of response frequency when a 

monochromatic forcing at multiple or sub-multiples 

frequencies of fn is applied. The analysis of the 

spectrum shows that the response frequency fr 

increase with the excitation frequency fe. Indeed, for 

fe=fn/2 the response frequency is 0.03 and for fe=fn, it 

is equal to 0.07. This frequency increases to 0.15 for a 

forcing at fe=2fn (Fig. 7).  

The Fig. 8 presents the component spectra of the 

transverse velocity for excitation frequencies smaller 
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and bigger than fn. In these spectra, we observe the 

existence of intense peaks which correspondent to the 

vortex winding and they show the primary 

Kelvin-Helmholtz instability. This instability 

propagates downstream and his size becomes larger 

and ends up by attenuating. The low amplitudes peaks 

correspond to under harmonics frequencies related to 

the phenomenon of pairing.  

The evolution of the response frequency according 

to the excitation frequency is represented with a 

logarithmic scale in the Fig. 9. A preferential 

amplification of the excitation frequency in the range 

[0.15 fn, 4 fn] is highlighted. In a mixing layer, Ho and 

Huang [1] and Astruc [10] have shown that the 

response frequency is equal to the excitation 

frequency in the interval [0,5 fn, 2 fn]. Our results 

complete the results of Sers [11] for an isothermal 

plane jet to a larger frequency range. This author has 

shown that the response frequency is closed to the 

excitation frequency in the range 0.82<fe/fn<1.13 for a 

Reynolds number comparable to the one studied here. 

Our results also confirm those of Hussain and 

Thompson [2] stating that the amplitude of the 

response for excitations at multiples or submultiples 

of the forcing frequency is weak when the ratio fe/ fn 

(or its inverse) overpasses two or three.  

The excitation frequency is related to the response 

frequency following modes. By analyzing the mode 

diagram in Fig. 9, the relationship between the 

excitation frequency and the response frequency 

allows us to understand the phenomenon of vortex 

fusion. Each mode correspond to a fusion 

phenomenon of vortex structures. Indeed, the first 

mode corresponds to the appearance of the first vortex 

pairing. By propagating downstream, these latter 

merge and a new modes appear. An energy transfer 

occurs between the fundamental mode, which is the 

most amplified one, and his subharmonic. Ho and 

Huang [1] have shown that the energy transfer 

translates into a pairing of two successive vortices. 

The energetic transfers between modes can be 

repeated with different sub-harmonics of the natural 

frequency fn and lead to successive pairings. For each 

pairing, the structures size increases almost twice as 

large in each pairing. The pairings, therefore, 

contribute, in the vast majority, to the enlargement of 

the mixed layer. 

Fig. 8. Spectrum of the transverse velocity component v for 

different frequencies; Re=100 

Fig. 9. Response frequency as a function of the excitation 

frequency 

The Fig. 10 presents the iso-vorticities for 

sub-harmonic and harmonic frequencies of the natural 

frequency. It is found that the vorticity fields are 

symmetric with respect to the jet axis over a distance 

stretching from the input up to x = 12 where there is 

the presence of a varicose mode and the flow 

maintains a regular form. Near the outlet of the jet, a 

sinuous mode appears. Vortices have a tendency to 

dissipate in the flow and they lose their energy. These 

nonlinear interactions are related to harmonic and 
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sub-harmonic of the jet dominant frequency. The 

effect of numerical reflection at the border output is 

felt; in fact the limit condition cannot translate the 

physical reality. 

fe=fn/2 

fe=fn 

fe=2fn 

Fig. 10. Vorticity field ω for different excitation 

frequencies (Re = 500).

7. Effect of viscosity on the vortex structures

The Fig. 11 presents the behaviour 

domain is described by the evolution of the 

field for different Reynolds numbers. The excitation 

frequency is maintained equal to the natural frequency 

of instability fn. The concentration of iso

near the jet axis is due to the relatively high intensity 

of the vortex initially formed. The formation and 

dissociation of vortex persist near the downstream for 

a small viscosity. Further downstream, the layer is 

rolled to form a vortex structure that grows 

progressively as it is advected by the mean motion of 

the fluid. By increasing the Reynolds number, the 

flow sensitivity to any external perturbation becomes 
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harmonic of the jet dominant frequency. The 

effect of numerical reflection at the border output is 

ion cannot translate the 

 

 

 

 

 

 for different excitation 

frequencies (Re = 500). 

Effect of viscosity on the vortex structures 

 of vortices in the 

domain is described by the evolution of the vorticity 

for different Reynolds numbers. The excitation 

frequency is maintained equal to the natural frequency 

. The concentration of iso-contours ψ 

s due to the relatively high intensity 

of the vortex initially formed. The formation and 

dissociation of vortex persist near the downstream for 

a small viscosity. Further downstream, the layer is 

rolled to form a vortex structure that grows 

s it is advected by the mean motion of 

the fluid. By increasing the Reynolds number, the 

flow sensitivity to any external perturbation becomes 

bigger. The viscosity has a role to stabilize the

The width of the shear layer formed in the flow 

increases continuously with the viscosity and 

produces large scale vortices while keeping the same 

structure. These varicose structures in the upstream 

propagate to the downstream and they give a sinuous 

mode. 

 

Fig. 11. Vorticity field ω for different Reynolds number

 
8. Conclusions  

In order to observe a non

windings, a control study of the jet has been carried. It 

consists to imposing a sinusoidal perturbation at the 

inlet. The excitation frequency was chosen

harmonic or sub-harmonic of the natural frequency. 

We found, for a perturbations realized at different 

frequencies, the response frequency in

increasing excitation frequency. The forcing at the 

natural frequency amplifies the harmon

harmonic of the excitation frequency. An attenuation 

of the amplitude is observed for large Reynolds 

numbers. The presence of harmonic and subharmonics 

frequencies corresponding to the maximum amplitude

bigger. The viscosity has a role to stabilize the flow. 

The width of the shear layer formed in the flow 

continuously with the viscosity and 

produces large scale vortices while keeping the same 

structure. These varicose structures in the upstream 

propagate to the downstream and they give a sinuous 

 

 

 

 

 

ω for different Reynolds numbers 

In order to observe a non-linear effect on vortex 

windings, a control study of the jet has been carried. It 

soidal perturbation at the 

. The excitation frequency was chosen equal to a 

harmonic of the natural frequency. 

We found, for a perturbations realized at different 

response frequency increases with 

increasing excitation frequency. The forcing at the 

natural frequency amplifies the harmonics or sub 

harmonic of the excitation frequency. An attenuation 

of the amplitude is observed for large Reynolds 

numbers. The presence of harmonic and subharmonics 

frequencies corresponding to the maximum amplitude 
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of the wave instability made it possible to highlight 

the nonlinear phenomenon. 

We found an agreement between our results and 

those existing in the literature in some intervals of 

disturbance frequency. The results of our simulations 

are in agreement with those from the work of some 

authors. Nevertheless, determining the boundaries of 

the frequencies intervals remains an issue to be 

examinated. 
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