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Abstract: In this paper, we present a theoretical and numerical analysis of elasto-plastic problems based on the element-free Galerkin 

method (EFGM) and the numerical analysis. The study has been examined in planar stress analysis around the tip of a crack and in its 

opening mode of loading. In the EFGM, the implementation of the Moving Least Squares (MLS) approximation is used to obtain the 

approximation function and the transformation method is proposed to impose the essential boundary conditions. The discritized 

variational formulation for elasto-plastic materials obeying to the von Mises criterion is presented. To examine the validity of this 

technique, stress fields in a plate with a crack have been calculated. 
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1. Introduction 

The use of FEM in incremental plasticity is a 

common practice but it has its own limitations. In the 

last decade Belytschko, Lu and Gu Ref. [1] introduced 

the EFG method to reduce some of the shortcomings of 

FEM in the solution of elastic field problems. The 

paper of Nayroles, Touzot and Villon Ref. [2] namely 

„„Generalizing the FEM‟‟ was a close work prior to the 

former one and this work by itself seems to be inspired 

by another work which is in the area of moving least 

square (MLS) interpolants Ref. [3]. After introducing 

of the EFGM, this method has been used in a wide 

range of different subjects such as dynamic fracture 

Ref. [4, 5], crack growth Ref. [6, 7], elastic plates and 

shells Ref. [8], and non-elastic stress analysis Ref. [9].  

The EFG Method has already been employed in 

elasto-plastic range by Barry and Saigal Ref. [9]. 

However, in their elasto-plastic endeavor, stress 

analysis around the crack tip has not been considered.  
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The existence of singularities such as cracks, 

demand special trends to ensure the convergence of the 

numerical method. Moreover, coincidence of non- 

linearity and singularity phenomena produce higher 

order difficulties for numerical solutions. It has to be 

mentioned that in the harsh nonlinear solution manner 

the value of most variables change in each level of 

iterative procedure. 

2. Moving Least Squares Approximation 

An excellent description of MLS is given by 

Lancaster and Salkauskas Ref. [3]. The MLS 

approximation ( )hu x is defined in the domain   by  
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where ( )p x is the basis function, nb is the number of 

terms in the basis function, and the coefficients 

( )ja x are also functions of x, which are obtained at any 

point x by minimizing a weighted discrete L2 norm of: 
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where iu is the nodal value parameter of u(x) at node xi, 

and m is the number of nodes in the neighborhood of x 

for which the weight function ( ) ( ) 0i iw x w x x   . 

Many kinds of weight functions have been used in 

meshless methods. The quartic spline weight function 

is used in this paper, 
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where maxir x x d  is the normalized radius and 

maxd is the size of influence domain of point xi. 

Using the stationary condition for J  with respect to 

a(x), we can solve a(x). And then, substituting it into 

(1), we have 
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where the MLS shape function ( )i x is defined by 
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in the above equation, the matrices A(x) (moment 

matrix) and B(x) are given by  
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The MLS shape functions given in (5) do not, in 

general, satisfy the Kronecker‟s delta property, i.e., 

( ) .i j ijx   In order to overcome this difficulty, we 

use the transformation method whose the trans- 

formation matrix  is formed by establishing the 

relationship between the nodal value ( )h

j k jku x u


and the 

“generalized” displacement iju by 

 
1

( ) ( )
mh

j i jii
u x x u


  (7) 

 
-1

1

m

ji ik jki
u u





 (8) 

where ( )ik i kx  ; by substituting (8) into (7), one can 

obtain 
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where  

 
1

1
( ) ( )

m

k ki ii
x x  


           (10) 

Note that 
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and u
h
 and hu satisfy the following boundary 

conditions: 
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where 
iu denotes a set of particle numbers in which 

the associated particles are located on boundary u . 

From (11), we directly obtain 

 ( ),   0,   .
iji j i ji uu u x u i    

 
     (13) 

3. Governing Equations 

In the field of solid mechanics the equilibrium 

equation for a continuous media under small 

displacements is given as 

 0  in  div( ) f             (14) 

with essential and natural boundary conditions as 

follows 

   on  uu u               (15) 

   on  tt( ) n t               (16) 

In these relations,  is the stress tensor, f  is the 

body force vector, u  is the displacement vector, 

t  is the traction force and n is the outward unit 

normal vector to the boundary .  

The incremental elastoplastic constitutive equations: 

 
epC                  (17) 

where  is the Cauchy stress increment tensor, epC is 

called the elasto-plastic tangent constitutive matrix and 

  is the strain increment tensor can be decomposed 

into elastic and plastic parts: 
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e p                  (18) 

The elastic constitutive relations: 

 
e e

ij ijkl klC                 (19) 

where e
ijklC denotes elastic modulus tensor.  

In this work, according to the von Mises criteria. The 

yield function is written as  

 
0.53

( , ) ( ) ( )
2

p p

ij ij Yf             (20) 

where ij denotes deviatoric stress and Y  the yield 

stress. p  indicates equivalent (or effective) plastic 

strain, and its time rate is defined as 

 
0.52

( )
3

p p p

ij ij                 (21) 

From the associative flow rule, plastic strain can be 

writ-ten as follows: 

 /p

ij ijf                   (22) 

where  denotes plastic multiplier (or the flow 

amplitude) and ijf   defines the plastic flow 

direction.  

The expression of elasto-plastic tangent tensor 
epC can be written as (see Ref. [10]) 

  
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where ( )N  is the unit flow direction vector defined as 

follows: 
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where 2 / 2ij ijJ s s  is the second invariant of the 

deviatoric stress tensor s of .  

For the variational formulation in terms of 

displacements, the terms which do not depend on the 

incremental field u disappear and the bifunctional is 

reduced to (more details can be seen in Ref. [11]): 
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Therefore, the kinematical variational principle 

becomes 
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k
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where ku is the displacement field kinematically 

admissible (KA). 

4. Least Squares Discretization 

The displacement and strain increment fields are 

expressed with respect to an unknown nodal 

displacement increment vector U as (see Ref. [11]): 

 ( ) ( )   and   ( )u x x U B x U          (27) 

where ( )x  is the matrix of the shape functions, 

( ) ( ( ))sB x x and s  is the symmetric gradient 

operator. 

Let us introduce the generalized nodal force 

increment vector: 

 
t

T TF fd td 
 

             (28) 

The discretized form of the (25) is then a set of non- 

linear equations:     

 ( ) T epU B C B Ud F


        (29) 

In EFGM a crack can rather be model more easily 

than other methods. Here the rule is to omit that part of 

the shape function of any node which is situated in 

other side of a crack line. In the region near to the crack 

tip this rule has some ambiguity. In this work we have 

decided to increase the number of nodes to cover 

discontinuity fault. It should also be mentioned that, 

some modification technique has been used to 

overcome this problem Ref. [12]. 

We can use J-integral to represent a numerical value 

for stress singularity. Generally, in elasto-plastic 
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situations J-integral is used representative to show the 

magnitude of stress singularity in crack tip. J-integral is 

an integral over a special function of stress, which is 

defined as follows Ref. [13] if we consider a crack in 

the 
kx direction: 

 
,( ) ,      1,2

c
k k j j k cJ Wn t u d k


        (30) 

where
c is a generic contour surrounding the crack 

front (belonging to a plane orthogonal to the crack 

plane in a point on the crack front), . 2W    is the 

strain energy density, j ij it n  is the traction vector 

evaluated along the contour 
c , with normal unit 

outwards components jn and finally ju  is the 

displacement vector. 

5. Numerical Result 

In this example, we considered is a rectangular plate 

with an edge crack of length a=4mm under a 

distributed load as shown in Fig. 1. The load is 1000Pa, 

the size of the plate is Ll=5220mm² and the other 

parameters are the yield stress 210 ,Y MPa   

Poisson‟s ratio 0.25,   and Young‟s modulus 
52 10 ,E MPa  (see Ref. [14]).  

 

Fig. 1  Geometry and loading 

 

Fig. 2  Boundary conditions and irregular nodal 

arrangement 

 

Fig. 3  Distribution of the von Mises Stress 

 

Fig. 4  Distribution of the equivalent strain 

6. Conclusions 

In this paper by combining EFG and incremental 

plasticity, a new solution method has been proposed. It 

is shown that the extension of EFGM to elasto-plastic 

stress analysis including the stress analysis in crack 

problems is feasible and that its results are reasonable. 

In addition, we used the transformation method to 

overcome the difficulty associated with the imposition 

of boundary conditions because the MLS shape 

functions, in general, didn‟t satisfy the Kronecker‟s 

delta property. 
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