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Abstract:  This paper presents a finite element model for sound transmission analysis through a double panel inserted in an infinite 
baffle. The proposed model is derived from a multi-field variational principle involving structural displacement and acoustic pressure 
inside the fluid cavity. To solve the vibro-acoustic problem, the plate displacements are expanded as a modal summation of the plate's 
eigenfunctions in vacuo. Similarly, the cavity pressure is expanded as a summation of the modes of the cavity with rigid boundaries. 
Then, an appropriate reduced-order model is introduced. The structure is excited by a plane wave at the source side. The radiated sound 
power is calculated by means of a discrete solution of the Rayleigh Integral. Fluid loading is neglected. An example of the normal 
sound transmission loss of a double aluminum panel is shown. This example illustrates the accuracy and the versatility of the proposed 
reduced order model, especially in terms of prediction of sound transmission. 
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1. Introduction 

Double-wall structures are widely used in noise 

control due to their superiority over single-leaf 

structures in providing better acoustic insulation. 

Typical examples include double glazed windows, 

fuselage of airplanes, vehicles, etc. Different 

theoretical, experimental and numerical approaches 

have been investigated to predict the sound 

transmission through double walls. In [1, 2, 3] 

theoretical approaches are proposed for the derivation 

of the transmission sound factor of double panels of 

infinite size exposed to a random sound field as a 

function of frequency and angle of incidence. For a 

finite panels size, a theoretical study, based on Fourier 

series expansions, on the vibroacoustic performance 

of a rectangular double-panel partition clamp mounted 

in an infinite acoustic rigid baffle is presented in [4]. 

Experimental evaluation of sound transmission 

through single, double and triple glazing can be found 

in [5, 6, 7, 8]. Regarding the numerical prediction 

approaches, several methods are available in the 

literature, such as the finite element method (FEM), 

the boundary element method (BEM), the Statistical 

Energy Analysis (SEA), etc. In [9] FEM is applied to 

study the viscothermal fluid effects on vibro-acoustic 

behaviour of double elastic panels. The FEM is 

applied in [10] by the authors for the different layers 

of the sound barrier coupled to a variational BEM to 

account for fluid loading. In [11], the SEA is used for 

predicting sound transmission through double walls 

and for computing the non-resonant loss factor. For all 

these approaches, the choice of the numerical method 

is related to the computational cost and the frequency 

band to be treated. 
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This paper describes a finite element model for the 

sound transmission analysis through a double panel 

inserted in an infinite baffle.  This model is derived 

from a variational principle involving structural 

displacement and acoustic pressure in the fluid cavity. 

To solve the vibro-acoustic problem, the direct 

solution can be considered only for small model sizes. 

This has severe limitations in attaining adequate 

accuracy and wider frequency ranges of interest. A 

reduced order-model is then proposed to solve the 

problem at a lower cost. The proposed methodology, 

based on a normal mode expansion, requires the 

computation of the uncoupled structural and acoustic 

modes. The uncoupled structural modes are the modes 

of the panels without fluid pressure loading at 

fluid-structure interface, whereas the uncoupled 

acoustic modes are the cavity modes with rigid wall 

boundary conditions at the fluid-structure interface. 

The effects of the higher modes of each subsystem can 

be taken into account through an appropriate so-called 

“static correction”, however this method is out of the 

scope of this work.  

As a next step, the sound transmission through double 

walls with air cavity is investigated. When the normal 

velocity distribution of the panel is known, the 

acoustic pressure field generated in the outward 

direction of the two plates can be calculated with the 

so-called Rayleigh integral for two-dimensional sound 

radiation. For this purpose, it is assumed that the 

double wall panel is placed in an infinite baffle. The 

normal incidence sound transmission is chosen in 

order to evaluate the acoustic performances and the 

sound insulation of the double wall. Example of the 

normal sound transmission loss of a double aluminum 

panel is shown in order to illustrate the accuracy and 

the versatility of the proposed reduced order model. 

 

 

2. Finite element formulation of the coupled 
problem 

2.1 Local equations 

Consider a double-wall structure shown in Fig. 1. 

Each wall occupies a domain Si, i  {1, 2} such 

that S  (S1,  S 2)  is a partition of the whole 

structure domain. A prescribed force density Fd is 
applied to the external boundary t  of S  and a 

prescribed displacement ud  is applied on a part u  

of S . The two structures are separated by an 

acoustic enclosure filled with a compressible and 

inviscid fluid occupying the domain F . The cavity 

walls are rigid except those in contact with the flexible 

wall structures noted . 
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Fig. 1  Double wall structure. 
 

The harmonic local equations of this 

structural-acoustic coupled problem can be written in 

terms of structure displacement u  and fluid pressure 

field p [12, 13] 

 in  +)( div 2
S S 0uu        (1) 

t
d

S  on               )( Fnu         (2) 

u
d  on                       uu        (3) 
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uS p  on               )( nnu         (4) 

  in              0
2

2

F
F

p
c

p 


      (5) 

  on       2  nun Fp         (6) 

where   is the angular frequency, nS  and n  are 

the external unit normal to S  and F ; S  and 

F  are the structure and fluid mass densities; cF  is 

the speed of sound in the fluid; and   is the structure 

stress tensor.  

Equation (1) corresponds to the elastodynamic 

equation in the absence of body force; (2) and (3) are 

the prescribed mechanical boundary conditions; (4) 

results from the action of pressure forces exerted by 

the fluid on the structure; (5) is the Helmholtz 

equation; and (6) is the contact condition for the fluid 

on.    

 

2.2 Variational formulation 

The variational formulation of the problem is obtained 

using the test-function method. For this purpose, we 

introduce the spaces Cu  and Cp  of sufficiently 

smooth functions associated with the field variables 

u  and p respectively. 

Let u  be the test function associated to u , 

belonging to the admissible space 

 uuu CC  on  / 0uu  . Multiplying (1) by 

u Cu
 , applying Green's formula, and finally taking 

(2) and (4) into account, we have: 

        d                            

d:d)d(:)( 2














u
d

S

Cv

vspv

t

SS

uuF

uuunuu




 

(7) 

Similarly, let p  be the test function, associated to 

p, belonging to the admissible space Cp. Multiplying 

(5) by p Cp , applying Green's formula, and finally 

taking (6) into account, we obtain: 

02

2

2

  0d                      

dd
1

Cpvpp
c

spvpp

F

F

FF

F
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
















nu

 (8) 

Thus, the variational unsymmetric formulation of the 

fluid/elastic structure coupled problem consists in 

finding u Cu  such that u  ud  on u  and 

p Cp , satisfying (7) and (8), with appropriate initial 

conditions. The symmetrization of this formulation 

can be obtained through the introduction of an 

intermediate unknown field, namely the fluid 

displacement potential field [14, 15]. 

 

After discretizing by the finite element method the 

bilinear forms in (7) and (8), we obtain the following 

matrix system of the coupled problem: 






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


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









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


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









 

0

F

P

U

MC

0M

K0

CK

p
T
up

u

p

upu 2    (9) 

where U  and P  are the vectors of nodal values of 

u  and p respectively.  The submatrices of (9) are 

given by: 
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 (u)S
 :(u)dv UTK uU 

SuS
 :udv UTMuU 

Fd
t
 udv UTF

pn  uds UTCupP

u  npds PTCup
T U

1

F
pF

 pdv PTK pP

1

FcF
2

ppdvF
 PTM pP

 

Remark:  

The static response of the fluid to a prescribed wall 

normal displacement u n  on the fluid-structure 

interface  is obtained from the following constraint 

0dd2    F

vpscFF nu        (10) 

This constraint has to be added to the variational 

formulation of the problem ((7) and (8)) in order to 

regularize the zero frequency situation (see [14] for 

more details). 

From (10), the constant static pressure is given by 

s
c

p
F

FFs d
2

nu 


 


          (11) 

in which F  denotes the volume occupied by the 

domain F . 

3. Reduced order model 

In this section, we introduce a reduced-order 

formulation of the variational equations (7) and (8) by a 

Ritz-Galerkin projection on two bases spanning the 

admissible spaces uC  and pC . For uC , we use the in 

vacuo structural modes. Concerning pC , the basis is 

formed by the eigenmodes of the Helmholtz equation 

with rigid boundary condition. In the sequel, instead of 

starting from the variational formulation, we will carry 

the projection directly on the discretized system (9). 

3.1 Eigenmodes of the structure in vacuo 

In a first phase, the first Ns  eigenmodes of the 

structure in vacuo are obtained from  

 ssiusiu Ni ,,1for  ][ 2  0YMK   

where (si ,Ysi)  are the natural frequency and 

eigenvector for the i-th structural mode. These modes 

verify the following orthogonality properties 

ijsisju
T
siijsju

T
si  2 and  YKYYMY  

where ij  is the Kronecker symbol and Ysj  have 

been normalized with respect to the structure mass 

matrix. 

3.2 Eigenmodes of the internal acoustic cavity with 

rigid walls 

In this second phase, the first N f  eigenmodes of the 

acoustic cavity with rigid boundary conditions are 

obtained from the following equation 

 ffipfip Ni ,,1for  ][ 2  0YMK   

where ( fi ,Yfi)  are the natural frequency and 

eigenvector for the i-th acoustic mode. These modes 

verify the following orthogonality properties 

Yfi
T M pYfj ij  and Yfi

T K pYfj  fi
2ij  

where Yfj  have been normalized with respect to the 

fluid mass matrix. 
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3.3 Modal expansion of the general problem 

By introducing the matrices ][ 1 ssNss YYY   

of size (Ms,Ns)  and ][ 1 ffNff YYY   of 

size (M f ,N f )  corresponding to the uncoupled bases 

( Ms  and M f  are the total number of degrees of 

freedom in the finite elements model associated to the 

structure and the acoustic domains respectively), the 

displacement and pressure are sought as 

)( and )( tt ffss qYPqYU        (12) 

where the vectors 
T

sNss s
qq ][ 1 q  and 

T
fNfff qq ][ 1 q  are the modal amplitudes 

of the structure displacement and the fluid pressure 

respectively.  

Substituting these relations into (9) and 

pre-multiplying the first row by Ys
T  and the second 

one by Yf
T , we obtain the equation 
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(13) 

This matrix equation represents the reduced order 

model of the structural acoustic. If only few modes are 

kept for the projection, the size of this reduced order 

model ( Ns N f ) is much more smaller than the initial 

one ( Ms M f ). Equation (13) can be also written in 

the following form of coupled differential equations: 

 Ns mechanical equations 





fN

j
ifjijsisisisisisi Fqqqiq

1

22 2   

 N f  acoustic equations 





sN

j
sjijfifififififi qqqiq

1

222 02 

where Fi  Ysi
T F  is the mechanical excitation of the 

i-th mode; ij  Ysi
TCupYfj  is the fluid-structure 

modal coupling coefficient; si  and  fi  are the 

introduced modal damping coefficients for structure 

and fluid respectively. 

4. Acoustic indicators 

In order to evaluate the acoustic performances and the 

sound insulation property of the double-wall panels, 

the radiated sound power (  t ) and the normal 

incidence sound transmission (nSTL) are used as 

acoustic indicators in this work. 

4.1 Radiated sound power 

The radiated (or transmitted) sound power through the 

area S2  of the panel S 2  is given by: 







  

2

G)d,(G),(Re
2

1
)(

S
nt Svp      (14) 

where G  is a point on the plate surface S2 , p is 

the sound pressure applied as an external loading, vn  

is the normal velocity (   denotes the complex 

conjugate) and Re is the real part of the expression.  

For a flat plate embedded in an infinite rigid plane 

baffle and radiating in a semi infinite fluid, p can be 

obtained using the Rayleigh Integral [3]:  

S
r

e
v

i
p

S

ikr

n dG),(
2

M),(
2

0 


 

  
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where 0  is the mass density of the external acoustic 

domain, k  is the wave number expressed as  / c0, 

c0 is the acoustic speed of sound, M is a point inside 

the external acoustic domain and vn (,G)  is the 

normal velocity at point G expressed as 

vn (,G) = v(,G) nS . Note that the normal velocity 

distribution on the structure can be easily obtained 

from the previous finite element formulation.  

 

Rigid infinite baffle

i

vni
rij

i

Ωs2
j

 

Fig. 2 Subdivision of the panel S 2  into elemental 
radiators. 

 

As shown in Fig. 2 the baffled panel is divided into a 

grid of R  rectangular elements with equal size 

whose transverse vibrations are specified in terms of 

the normal velocities at their centre positions. 

Assuming that the dimensions of the element are 

small compared with both the structural wavelength 

and the acoustic wavelength, the total radiated sound 

power (equation (14)) can then expressed as the 

summation of the powers radiated by each element, so 

that 

)Re(
2

pv H
n

e
t

S
             (15) 

where the superscript H  denotes the hermitian 

transpose, vn  and p  are the vectors of complex 

amplitudes of the normal volume velocity and 

acoustic pressure in all elements and Se  is the area of 

each element. The pressure on each element is 

generated by the vibrations of all elements of the 

panel. The vector of sound pressure can therefore be 

expressed by the impedance matrix relation 

p Zvn                  (16) 

where Z  is the matrix incorporating the point and 

transfer acoustic impedance terms over the grid of 

elements into which the panel has been subdivided: 

Zij  (i0Se / 2rij )e
ikrij  ( rij  is the distance 

between the centers of the i-th and j-th elements). 

Note that, because of reciprocity, the impedance 

matrix Z  is symmetric. Substituting (16) into the 

expression for the total radiated sound power given in 

(15), we obtain 

n
H
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n
HH

n
e

n
H
n

e
t

SS

Rvv

vZZ(vZv(v

=                               

)][Re
4

)Re
2


 

The matrix R  is defined as the "radiation resistance 

matrix" for the elementary radiators which, for the 

baffled panel, is given by 
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

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This method can be applied to any plane surface in an 

infinite baffle, independently of the boundary 

conditions. It only requires the knowledge of the 

surface geometry, the characteristics of the fluid and 

the velocity field distribution. In this work, a finite 

element approach is used to evaluate this velocity field 

by using a sufficient number of discrete radiating 

elements according to the smallest wavelength to be 

observed. 

 

4.2 Normal incidence sound transmission 

The normal incidence sound transmission of the 

double-wall sandwich panels is investigated in this 
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section using Rayleigh Integral method described 

below. It is evaluated using the following formula: 

nSTL 10 log
 i

 t

 

where  i  and  t  are the incident and transmitted 

acoustic power respectively. For normal plane wave 

applied to plate S1, the incident sound power is 

given by: 

 i 
Pinc

2
S1

20c0

 

where Pinc  represents the normal incident sound 

pressure amplitude and S1 is the area of the whole 

panel S1.  

5. Numerical example 

In this last section, numerical results, obtained with a 

Matlab program developed by the authors, are 

proposed in order to validate and analyze results 

computed from the proposed formulations. The 

example concerns sound transmission through a 

double-plate system filled with air. In this example, we 

analyze the air gap effect on the natural vibration of the 

coupled system and the sound attenuation. The 

accuracy of model predictions is checked against 

existing test data. 

The problem under consideration is shown in Fig. 3. A 

normal incidence plane wave excites a double-plate 

system filled with air (density F  = 1.21 kg/m3 and 

speed of sound cF = 340 m/s). The plane wave has a 

pressure amplitude of 1 N/m2 and is applied to plate 1 

as the only external force to the system. The plates are 

identical and simply supported with thicknesses of 1 

mm. The density of the plates is 2814 kg/m3, the 

Young’s modulus is 71 GPa, the Loss factor is 0.01 and 

Poisson ratio 0.33. The surrounding fluid is the air. 

This example was originally proposed by Panneton in 

[16]. 

 

Air Cavity

Plate 1

Plate 2

Rigid baffle

Normal plane 
     wave

a=0.35 m

b=
0.

22
 m

c=
0.0

76
4 m

 

Fig. 3 Double-plate system filled with air: geometric data. 
 
Concerning the finite element discretization, we have 

used, for the structural part, 1010 rectangular plate 

elements for each panel. The acoustic cavity is 

discretized using 10105 hexahedric elements. The 

structural and acoustic meshes are compatible at the 

interface. For more details about these elements and the 

fluid-structure coupling element, we refer the reader to 

[13]. 

 

When the excitation is applied to the first plate, the 

second one vibrates and radiates sound caused by the 

coupling of air and plate 1. The normal incidence sound 

transmission loss is then computed using the Rayleigh's 

integral method which needs the finite element solution 

of surface velocities of plate 2.  

For this purpose, the resolution of the coupled system 

is done with a modal reduction approach. In order to 

evaluate the number of structural and acoustic modes to 

keep in the modal projection, various simulations have 

been performed and compared to results of direct 

method. We consider that Ns = 20 and Nf = 20, which 

corresponds approximatively to the double of the 
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frequency of interest ([0, 1000] Hz), is satisfying.  In 

this respect, it should be noted that the resulting 

reduction of the computational effort using the reduced 

order method is very significant compared to those of 

the direct approach (about one minute for the reduced 

model and 34 minutes for direct approach). 
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Air−filled double wall system
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Fig. 4 Comparison of the normal incidence sound 
transmission (nSTL) through an air-filled double panel and 
a simple panel. 

 

Fig. 4 shows the normal incidence transmission loss 

through a simply supported plate (dashed line). Due to 

the modal behavior of the plate, dips in the 

transmission loss curve are observed at its resonance 

frequencies (modes (1, 1), (3, 1) and (1, 3)). When a 

second plate is used to form an airtight cavity 

(continuous line), an increase in the transmission loss is 

achieved except in the region of the so-called 

plate-cavity-plate resonance (mode (1, 1)*). At this 

frequency, the two plates move out of phase with each 

other and the effect of the cavity on the plates is mostly 

one of added stiffness. This frequency is similar to the 

mass-air-mass resonance of unbounded double panels 

analyzed in the next paragraph. The frequencies and 

the mode shapes of these coupled modes are presented 

in Fig. 5. Note that the influence of several key 

parameters on the sound isolation capability of the 

double-panel configuration including panel 

dimensions, thickness of air cavity, elevation angle, 

and azimuth angle of incidence sound is not the 

purpose of this study and can be found in [4].  

 

 

Fig. 5 Frequencies and the mode shapes of the first fourth 

coupled modes. 

 

Fig. 6 presents a comparison of the normal incidence 

sound transmission through an air-filled finite double 

panel and an air-filled infinite double panel computed 

from an analytical solution given in [3, 17]. For 

unbounded panels, the first dip occurs at the 
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mass-air-mass frequency ( fmam =181.63 Hz) given by 

the formula: 

21

21
2

2

1

ss

ssFF
mam mm

mm

d

c
f







 

where d  is the panel spacing and mS1 and mS 2 are 

the surface mass densities of the panels.  
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Air−filled finite double wall system
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Fig. 6 Comparison of the normal incidence sound 

transmission (nSTL) through an air-filled finite double 

panel (finite element result) and an air-filled infinite double 

panel (analytical solution). 

 

At this frequency, the two plates vibrate, as it were, on 

the stiffness of the air layer. For low frequencies up to 

the mass-air-mass frequency, the transmission loss 

follows the so-called mass law: the two plates are 

coupled in such a way that the plates vibrate as if they 

were a single plate with the total mass of the two plates 

and the transmission loss increasing with frequency at 

6 dB per octave and 6 dB when the mass is doubled. It's 

clear from this comparison that the unbounded model is 

attractive to use for the prediction of global trends at 

higher frequencies, but is unsuitable to use for 

predictions in the small frequency bands and around 

eigenfrequencies of the double wall panel [17]. 

 

6. Conclusions 

In this paper, a finite element formulation for sound 

transmission through double wall panels is presented. 

A reduced-order model, based on a normal mode 

expansion, is then developed. The proposed 

methodology requires the computation of the 

eigenmodes of the structure in vacuo, and the rigid 

acoustic cavity. Despite its reduced size, this model is 

proved to be very efficient for simulations of 

steady-state analyses of structural-acoustic coupled 

systems. The Rayleigh integral method is then used in 

order to estimate the sound transmission loss factor of 

the system. Examples are presented in order to 

validate and illustrate the efficiency of the proposed 

finite element formulation.  
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