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Abstract: Several DNS results show that compressibility has an important effect on the pressure-strain correlation, the term 

recognized as the principal responsible for the change in the magnitude of Reynolds-stress anisotropies. Thus, the pressure-strain 

incompressible models do not correctly predict compressible turbulence at high-speed shear flow. A method of including 

compressibility effects in the pressure strain correlation is the subject of the present study. The LRR model developed by 

Launder-Reece and Rodi has shown a great success in the simulating a variety of incompressible complex turbulent flows. On the 

other hand this model has not predicted correctly the compressible turbulence at high speed shear flow. Thus, a compressible 

correction for this model is the major aim of this study. In the present work, five recent compressible models for the pressure-strain 

correlation have been used to modify the LRR model. This correction concerns essentially the C1, C2, C3 and C4 coefficients which 

became in a compressible situation a function of the turbulent Mach number.  
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1. Introduction 

  The comprehension of compressibility effects on 

turbulence is fundamental for many industrial 

applications, such as combustion, environment and 

aerodynamics. These effects became significant when 

the mean flow is strongly deformed or when the 

turbulent kinetic energy contained in the dilatational 

fluctuations is important. It is well known that the 

growth rate of turbulent kinetic energy is critically 

reduced with increasing turbulent Mach number. In this 

context, many studies of the compressible shear flow 

show the changes of the turbulence structures are 

principally due to the structural compressibility effects 

which significantly affect the pressure-strain 

correlation. 

Eventually, the pressure-strain correlation appears as 

the main factor for the changes in the magnitude of the 

Reynolds stress anisotropies. The extension of the 

standard models to compressible flows represents a 

research topic of great scientific and industrial 

interests. As in incompressible turbulent situation the 

experimental and numerical results are used to examine 

the performance of the corrections proposed by some 

authors to the LRR model for the pressure-strain 

correlation, thus the subject of this paper is to analyze 

the turbulence models developed to study compressible 

flows and to evaluate its performance with DNS results 

developed by Sarkar et al.[8] in uniformly 

compressible shear flow. 
 1.1. Governing equations 

Prepare The General equations governing the 

motion of a compressible fluid are the Navier-Stokes 

equations. They can be written as follows for mass, 

momentum and energy conservation: 
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For an ideal gas, the relation between pressure, 

density and temperature can be written as follows:  
p R T= ρ                                      (4)  

1.2 Averaged equations: 

In incompressible flows, two averaging techniques 

can be used to split a physical quantity F, into an 

averaged and a fluctuating term. Such techniques are 

known as the ensemble and the mass-weighted 

averages, which are often referred to as the Reynolds 

and the Favre averages respectively. For the Reynolds 

average technique, F is divided into a mean part, F , 
and a fluctuating part, F’, as 

( ) ( ) ( ) ( )' '
i i i iF x , t F x , t F x , t , F x , t 0= + =  

While in the Favre average, except density and 

pressure, the quantity F is written in the following form  

( ) ɶ ( ) ( )''
i i iF x , t F x , t F x , t= +  

Where the Favre mean is defined as 

ɶ ( ) ( )i iF x ,t F x ,t /=ρ ρ   

 

 

And the Favre fluctuation "F satisfies the following 

relationships: 

1.3. basic equations of the Favre second-order closure 

in compressible homogeneous turbulent shear flow 

For compressible homogeneous shear flow, the mean 

velocity gradient is given by: 

�U S
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Where S is the constant mean shear rate. These 

considerations lead to: �U 0, ctek,k = ρ =  

At high Reynolds numbers, when assuming the 

hypothesis of isotropy dissipative structures of the 

turbulence, the Favre averaged Reynolds stress should 

be a solution of the transport equation: 
�
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ρ = + ϕ + π δ − ρ ε + ε δ  

 
          (6)          

The governing equation of turbulent kinetic energy, 

�" "
i ik u u / 2= , is: 

( )d
k P

dt d s cρ = + π − ρ ε + ε                           (7)                                               

Classically, the second-order closure requires a 

transport equation of the turbulent dissipation rate. The 

new concept of dissipation in compressible turbulence 

was proposed by Sarkar et al.[3], Zeeman[2] and 

Ristorcelli [4] and can be written as follows:  

s cε=ε +ε                                         (8)                                             

( )2
'

c i ,i

4
u

3
ρε = µ  represent the solenoidal and 

compressible parts ofεrespectively .Sarkar et al.[3] 

have mentioned that for moderate Mach numbers, 

sε is insensitive to the compressibility changes. This 

yields, for sε , a model transport equation, similar to 

what it was obtained in the incompressible case. Such a 

model equation is written as in [1], namely: 

2
s s s

1 2
d

C P C
d t k kε ε
ε ε ε

= −                   (9)                                                                                               

Where Cε1 and Cε2 are respectively the model constants 

Cε1=1.44 and Cε2=1.83 

We should remind that εc is generally taken to be 

proportional to εS through the following algebraic 

equation: ( )f Mc t sε = ε  

                                                                                               

F(Mt) is a function of the turbulent Mach number. 

( ) ( ) ( )'' " ' "
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As it is suggested in model of sarkar[3], one can write: 

( )f M M 2
t t= α                                                                                            

Where α is constant model, α=0.5 in homogeneous 

turbulence. 

Sarkar et al.[3] have also proposed a model for the 

pressure-dilatation correlation in term of turbulent 

Mach number as follows 

 P M M 2
d 2 t 3 s tπ = − α + α ρε  (12)                                                                                                 

Where P the turbulent kinetic energy production: 

�
�P u u U" " i, ji i= −ρ  

The model constants α2, α3 take the values α2 =0.15, 

α3=0.2 

The turbulent Mach number is described by the 

transport equation as follows 

     

(13)

 

2. Model of turbulence : 

2.1-Models of the pressure-strain correlation 

*Model of Launder Reece and Rodi[7]. 
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 (14)                                                                  

Where C1, C2, C3 and  C4 are constants that take on the 

values of: C1=3,  C2 =0.8 et  C3=1.75 et C4=1.31  
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*Model of Adumitroaie et al.(1999) 

Adumitroaie et al.(1990) assumed that incompressible 

modeling approach of the pressure strain correlation 

can be used to develop turbulent models taking into 

account compressibility effects. Considering a none 

zero divergence for the velocity fluctuation called the 

compressibility continuity constraint and using 

different models for the pressure dilatation which is 

proportional to the trace of the pressure strain, their 

model for the linear part of this term is written as: 
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The compressibility coefficients d1 and d2 are 

determined on the basis of some compressible closures 

of the pressure-dilatation correlation.  
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*Model of Song Fu et al. 

The following form for the pressure- strain correlation 

is proposed as : 
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� � � � �, , , ,0.5( ) 0.5( )iji j j i i j j iijwhere S U U and U U= + Ω = −  

Where C1 =1.8, C2 =0.8, C3=0.6+F(Mt), C4=0.6-F(Mt) 

When F(Mt)=0 and the dilatation of the mean velocity 

is neglected, the model is the same as the Launder’s 

model. Following the idea of zonal, the effect of the 

pressure-strain term should quickly increase in the 

moderate-Mt region. So, it is proposed here as  

F(Mt)=0.25exp(-0.05/Mt
3)   

 

*Model of MKL[10]: 

The contribution of MKL et al. appears in the 

correction of the Ci coefficients, which became in a 

compressible turbulence situation a function of the 

turbulent Mach number. The suggested method is 

based proportionality relations between the ratio of 

compressible and incompressible components of the 

pressure-strain correlation and the ratio relating the 

compressible and incompressible growth rate of the 

( ) ( )2t t
t t d s c

dM MP 1
M 1 1 M

dt 2k 22 k

 = + + γ γ − π − ρε − ρε ρ  
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turbulent kinetic energy. This method generates a 

pressure-strain model parametrized according to the 

turbulent Mach number: 

� �( )
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*Results and discussion 

The transport the transport equations (6), (7), (9) 

and(13) on which the second order closure for 

compressible homogenous shear flow is based, are 

solved using the forth-order accurate Runge-Kutta 

numerical scheme. The model predictions will be 

compared with DNS results conducted by Sarkar [6] 

for cases A1, A2, A3 and A4.These cases correspond to 

different initial conditions for which the initial values 

of the gradient Mach number Mg0 change by changing 

the initial values of (Sk/ε)0 and taking Mt0 constant as it 

is listed in Table. For the two cases B1 and B2 

correspond to different initial condition for which the 

initial values of the turbulent Mach number Mt0 change 

by changing the initial values of (Sk/ε)0 and taking Mg0 

constant  

 

 

Table1: Initial condition 

case Mt Mg εS/Sk 

  A1 

A2 

A3 

A4 

B1 

B2 

  0.4 

0.4 

0.4 

0.4 

0.4 

0.4 

  0.22 

0.44 

0.66 

1.32 

0.22 

0.22 

  1.8 

3.6 

5.4 

10.8 

5.4 

3.6 

Fig1. The time evolution of the gradient Mach number 

in cases A and B 

Fig2. The time evolution of the turbulent Mach number 

in cases A and B 

 

The data of compressible homogeneous shear flow can 

also be separated into three different regions. The cases 

in fig.2 come from the DNS of Sarkar [6]. It is easy to 

see that the difference of the turbulent Mach number 

(Mt) among cases A1, B1 and B2 is much larger than the 

difference among cases A2, A3 and A4; but the 

difference of Mg among cases A1, B1 and B2is much 

smaller than the difference among cases A2, A3 and A4. 

Paying more attention, we can see that the turbulent 

mach numbers of cases A1, B1 and B2are nearly all 

under 0.4, and the turbulent Mach numbers of cases A2, 

A3 and A4 are nearly all over 0.4. It seems that the data 
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can also be put into different regions. When the 

turbulent Mach number is under 0.4, the change of Mg 

is small, so the difference of among cases A1, B1 and B2 

is small. Taking another look at the cases A2, A3 and 

A4, we find the decline rates of Mg are all become 

smaller with increasing turbulent Mach numbers. It 

seems to tell when the turbulent Mach number is 

between 0.4 and 0.6, Mg   has a quick change; and 

when the turbulent Mach number is over 0.6, the 

change rate of Mg become small again. It can be seen 

again that three different regions exist in the 

compressible homogeneous shear flow. 

From these observations, it is proposed here that there 

exist three different regions in response to the 

compressible effects of turbulence: the low 

compressibility region (Mt<0.4) case A1, B1 and B2, the 

moderate compressibility region (0.4<Mt<0.6) case A2 

and A3, the high compressibility region (Mt>0.6). In 

different regions, the main compressible effect will be 

different. 

 

 

Fig.3a. The time evolution of the Reynolds-stress 

anisotropy b11 in case A1 

 

Fig.3b. The time evolution of the Reynolds-stress 

anisotropy b11 in case A4 

    

Fig4.a. The time evolution of the Reynolds-stress 

tensor -2b12 in case A1 

      
Fig4.b. The time evolution of the Reynolds-stress 

tensor -2b12 in case A4 
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Fig 5.a. The time evolution of the Reynolds-stress 

tensor b22 in case A1 

 
Fig5.b. The time evolution of the Reynolds-stress 

tensor b22 in case A4 

From fig3(a, b), fig4(a, b) and fig5(a, b) , it is clear that 

the incompressible Launder, Reece and Rodi (LRR) 

model [9] is still unable to predict the dramatic changes 

in the magnitude of the Reynolds-stress anisotropy and 

the pressure-strain correlation that arise from 

compressibility. The time evolution of Reynolds 

stress-anisotropy shows that the Adumitroaie model 

yields unacceptable results that are in disagreement 

with the DNS results. Because the compressibility 

correction model proposed by MKL et al. contains the 

turbulent Mach number Mt only, the predicted values 

for case A4 are in disagreement with the DNS results. 

The proposed form of the Song Fu provides an 

unacceptable performance in reproducing the DNS 

results for A4 case when the turbulence evolves at high 

compressibility. The results of Fig3 (a, b), fig4(a, b) 

and fig5(a, b) show that there is a decrease in the 

magnitude of the normalized production term -2b12 

when Mg0 increase. The effect of compressibility of the 

other components is also interest that there is an 

increase in the transverse and stream wise anisotropies 

from case A1 to A4. 

Fig 6.a. The time evolution of the normalized        

dissipation (ε/Sk) in case A1 

    

  

Fig 6.b. The time evolution of the normalized        

dissipation (ε/Sk) in case A4 

Fig 6(a, b) shows that there is a decrease of  (ε/Sk)         

when Mg0 increases. It is clearly that the primary reason 

of the decrease in (ε/Sk) (ε/Sk=-2b12 εs/P) is the 

reduced level of the production term -2b12. 

 



Aicha Hanafi et al. / / IJME, Vol. 1, Issue 4, pp. 157-163 
 

163 
 

 

Fig 7.a. Time evolution of the pressure-strain 

correlation Φ12 in case A1 

 

 Fig 7.b. Time evolution of the pressure-strain 

correlation Φ12 in case A4 

Fig 7(a, b) show the historical time of the components 

of the pressure-strain Φ12, these results are in 

disagreement with the DNS results of Sarkar, this 

especially in the A4 simulation case where the    

turbulent compressible flow is highly. 

Conclusion: 
In this study, the widely used second order closure has 

been used for the prediction of compressible 

homogeneous turbulent shear flow. 

The standard model for the pressure-strain correlation 

of L.R.R in conjunction with terms proposed by Sarkar 

yields poor predictions for compressible homogeneous 

shear flow. It was found that the dilatational terms are 

much smaller to reflect the correct physics of 

compressibility. An extension of the Launder, Reece 

and Rodi model has been proposed, the coefficients C1, 

C3 and C4 can be a function of the turbulent Mach 

number. 
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