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Abstract: The present paper focuses, in particular, on aspect ratio (AR) effects on Rayleigh-Bénard convection within enclosure 

under a uniform magnetic field. Results are presented and analyzed for different values of Hartmann number (60≤ Ha ≤ 80) and for a 

range of aspect ratios (0.75≤AR≤1) at various Rayleigh numbers (Ra). It is found that both enclosure aspect ratio and magnetic field 

intensity play a significant role in controlling the onset of the Rayleigh-Bénard convection flow. The entropy generation analysis 

demonstrates that irreversibility phenomena increase for lower aspect ratio values and moderate Hartmann numbers.  
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1. Introduction 

Natural convection in enclosures, in which heating 

from below and cooling from above, i.e. 

Rayleigh-Bénard convection (RBC), has long attracted 

considerable research interest in the literature[1-2]. 

The convection phenomenon that arises in fluid 

dynamics from the interaction of an electrically 

conducting fluid with the magnetic field is well known 

as magnetoconvection [3]. 

Magnetoconvection in cavities has become the basis of 

many scientific and engineering applications [4-5]. 

Numerous attempts have been made to analysis the 

Rayleigh-Bénard magnetoconvection (RBM) flow 

characteristics. Pirmohammadi et al. [6] conducted a 

steady, laminar, RBM flow in a tilted enclosure filled 

with liquid gallium. The authors revealed that as 

strength of the magnetic field is increased (Ha=70) 

convection is reduced and the heat transfer in the 

enclosure is mostly due to conduction mode. 

Besides, numerous works on entropy generation, 

relating to natural and forced convection [7] 

demonstrate the importance of the topic. 
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2. Physical model 

2.1. Rayleigh Bénard configuration 

The physical model considered is shown in Fig. 1. It 

consists of a rectangular enclosure with height H and 

length L, leading to an aspect ratio (AR=L/H) filled 

with an electrically conducting fluid whose Prandtl 

number is 0.71. It is assumed that the vertical walls are 

adiabatic, while the horizontal walls are maintained at 

constant temperatures. We also assume that the 

enclosure is permeated by a uniform and constant 

horizontal magnetic field.  

 

 

 

 

 

 

 

 

 

Fig.1. Physical model (Rayleigh-Bénard configuration). 
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2.2 Governing equations and boundary conditions 

The governing equations which describe the system 

behavior are the mass continuity equation, the 

incompressible Navier–Stokes equations, and the energy 

conservation equation.  

The dimensionless equations can be written as: 
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From the above equations it is observed that the present 

problem is mainly governed by two parameters, namely 

the thermal Rayleigh number Ra and Hartmann number 

Ha, defined as follows: 



 3THg
Ra


  ; 




BHHa   

2.3 Entropy generation  

Entropy generation in the cavity is due to two factors: 

heat transfer irreversibility and fluid friction 

irreversibility. Due to the existence of rather severe 

temperature gradients near and especially at the top 

corners of the heat source, the significant local entropy 

generation occurs close to these areas. Entropy 

generation is due to non-equilibrium flow imposed by 

boundary conditions through the channel walls. 

The dimensionless local total entropy generation number 

(S), given by the local thermodynamic equilibrium of the 

linear transport theory, can be written as: 
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Dimensionless local entropy generation due to thermal 

gradients and that due to velocity gradients are given by: 
22
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φ is the irreversibility coefficient given by:   
2
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which is taken constant at 0.1 in the present work.      

From the above equation we have denoted the local 

entropy generation due to heat transfer by STG and the 

local entropy generation due to fluid friction by SVG. 

 

3. Numerical approaches 

Numerical solutions have been performed using a finite 

volume home code “NASIM” based on the projection 

method with the help of an accelerated multigrid solver. 

A projection method is used to couple the momentum 

and continuity equations. A finite-volume method is used 

to discredit the Navier–Stokes and energy equations. The 

advective terms are discredited using a QUICK 

third-order scheme.  The Poisson pressure correction 

equation is solved using an accelerated multi-grid 

method [8]. 

In order to check the accuracy and reliability of the 

numerical procedure, Table 1 shows a comparison of 

calculated average Nusselt number (Nu) and the 

maximum stream function Ψ in the present work against 

the work of Ghasemi et al. [9] dealing with the 

magnetoconvection flow in differentially heated 

enclosure filled with nanofluid. It can be seen in Table 1 

that the agreement is good, which indirectly validates the 

present computations and lend us confidence for the use 

of the suggested numerical model.    
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Table1 Comparison of our results with those of Ghasemi  

et al. [9] for Ra=10
5
 and different Hartmann numbers. 

 

Ha Nu[9] Nu %              % 

0 4.738 4.7310  0.15 11.05 11.0469  0.050 

30 3.150 3.1412  0.28 5.710 5.70798  0.035 

60 1.851 1.8455  0.29 2.623 2.62125  0.067 

 

4. Results  

In this section the results of the numerical study are 

discussed in order to understand the natural convection 

of the flow in a square cavity in the presence of a 

magnetic field. Effects of applied magnetic field on the 

average Nusselt number and aspect ratio are discussed in 

detail. 

The streamlines plot at Rayleigh number Ra in range 

2×105 ≤Ra≤5.5×105 gives a first overview of the general 

structure of the flow. Furthermore, for different Ra 

values, the influence of the Hartmann number and the 

aspect ratio on the flow patterns was investigated. We 

display in fig. 2 the evolution of streamlines with the 

Hartmann numbers. It can be pointed out that, for high 

aspect ratio number (AR=1), the flow patterns seems to 

be similar when the Hartmann number increases from 60 

to 80. However, for small value of aspect ratio, the flow 

patterns changes noticeably, and one can observe an 

elongation of the eddies. As the Hartmann number 

increases, the Lorentz force effect increases.  

Consequently, the elongation of the eddies becomes 

more significant and its axis approaches the vertical. As 

can be noticed also in Fig.2 a rotating central cell 

occupies most of the cavity. Their intensities and their 

sizes increase as the Rayleigh number increases. The 

strength of circulation increases with a decreasing value 

of aspect ratio. 

 

 

 

Fig.2. Streamlines for different AR and Ha numbers 

(Ha= 60, 70, and 80). 

Fig. 3 shows the global kinetic energy magnitude over 

the whole cavity with three different AR and different Ha 

values. The predicted values using AR=0.5 are higher 

than those using AR=0.75 and 1. The simulated results is 

more remarkable at high Ha where vanishes and the 

deviation between the three aspect ratio is negligible, 

while it is more pronounced toward the first value 

Ha=60. 

 
Fig .3. Variation of kinetic energy versus Hartmann 

number (Ha) at different aspect ratios 

(AR=0.5, 0.75, and 1). 
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In Fig.4 we report the total enstrophy of the flow named 

)(t  and defined as: 

 dxdytyxt
D

,,
2

1
)( 2

   

where 
y

u

x

v









 defines the dimensionless vorticity 

and (D) is the computed domain. Fig.4 displays the 

variation of the enstrophy for different aspect ratio and 

50≤Ha≤80. The Ra is increased when AR decreases as 

reported in the same figure. The Ω remains weak when 

AR is in the vicinity of one, however, a significant 

decrease in Ω of the flow as a result of the attenuation of 

the flow by increasing Ha is observed. 

 

 
Fig. 4. Variation of Enstrophy versus Hartmann number 

(Ha) at different aspect ratio AR in range 

0.5-1. 

The flow structure revealed by isotherm plots in Fig.5 

clearly indicates the distribution of temperature for 2×105 

≤Ra≤5.5×105 at different values of aspect ratio ranging 

from 0.5 to 1. The intensity of convection is considerably 

decreased by the drag induced by the magnetic field, as 

indicated by a weak distortion of the isothermal lines. 

It’s clearly seen that the large distortion of the isotherms 

is an indication of the decrease of the intensity of 

convection. Furthermore, Fig. 5 demonstrates that the 

increase of Hartmann number tends to slow down the 

movement of the fluid. This follow configuration is 

maintained up to Ha= 60, 70 and 80 for which the 

numerical results indicate that convection is suppressed 

by the magnetic field.  

   

   

 

Fig.5. Isotherms at different AR and Ha numbers 

(Ha=60, 70, and 80).  

The heat transfer rate across the fluid layer can be 

expressed in terms of the average Nusselt number at y=0 

defined as: 

dx
yAR
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 Fig.6 presents the variation of the average Nusselt 

number Nu versus Ha for different aspect ratios. From 

this figure, Nu increases considerably with the decrease 

of the aspect ratio because the circulation flow becomes 

stronger when the two vertical walls sufficiently 

approached. One can notice that in the absence of 

magnetic field (Ha=0), the heat transfer rate is relatively 

large than those obtained at high Ha values for which the 

flow currents vanish.  
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Fig.6. Variation of average Nusselt number versus 

Hartmann number (Ha), at different aspect ratios, AR in 

range 0.5-1. 

For any aspect ratio, as seen in Fig.7, the heat transfer 

irreversibility (STG) is dominating for low Ha and 

higher for the case of square cavity (AR=1). The maps of 

local entropy generation corresponding to different 

aspect ratios and due to the heat transfer irreversibility 

are similar and decrease by increasing Ha as it is 

observed in Fig.7. This is mainly due to high temperature 

gradients manifested at high aspect ratio where the area 

of the heated wall from below is augmented.  

 
Fig.7. Irreversibility due to thermal gradient (STG) 

versus Hartmann number at different aspect ratios AR 

(0.25 to 1.). 

5. Conclusion 

In this paper the effects of aspect ratio on natural 

convection of Rayleigh-Bénard in an incompressible 

fluid in the presence of horizontal uniform magnetic field 

is analyzed and discussed. 

The enstrophy of the flow remains weak for the square 

cavity (AR=1), however, a significant decrease in Ω is 

observed by increasing Ha.  In the absence of magnetic 

field (Ha=0), the heat transfer rate is relatively larger 

than those obtained at high Ha values for which the flow 

currents vanish. The average Nusselt number Nu 

increases considerably with the decrease of the aspect 

ratio from 1 to 0.75.  For the all investigated aspect 

ratios, the heat transfer irreversibility (STG) is 

dominating for low Hartmann numbers and higher for 

the case of square cavity. 
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