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Abstract:In this paper we study numerically the 3D double-diffusive natural convection in a cubic cavity. The main purpose of this 

paper is to study the effect of the modification of the boundary condition of the upper and down sides of a cubical cavity, on the flow 

and heat transfer in the one side and on the entropy generated on the other side. The flow is considered laminar and caused by the 

interaction of thermal energy and the chemical species diffusions. The governing equations of the problem, concentration, energy and 

momentum, are formulated using vector potential-vorticity formalism in its three-dimensional form, then solved by the finite 

volumes method. The Rayleigh number is fixed at Ra=105 and the effects of the buoyancy ratio is studied for opposed temperature 

and concentration gradients. The particular interest is focalized on the three-dimensional aspects and entropy generation.    
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1. Introduction 
During the past several decades, a large number of 

numerical investigations have been carried out on the 

steady-state natural convection in enclosure since De 

Vahl Davis [1] published his benchmark solutions 

about a differentially heated enclosure. Kim and 

Viskanta [4] performed numerical and experimental 

investigations on the steady-state conjugate 

conduction–convection in a square enclosure of 

conductive walls. They found that under certain 

configuration and with specific parameters selection, 

the existence of solid walls reduces the average 

temperature difference across the centered cavity and 

hence partially stabilizes the flow and weakens the 

natural convection heat transfer. Acharya and Tsang 

[5] investigated the effects of wall conduction and 

enclosure inclination. Their work showed that the heat 

transfer rate decreases with decreasing conductivity 

ratio and increasing wall thickness, while it is hardly 

affected by the enclosure inclination since in their 

study the wall thickness accounts for 10–25% of the 

enclosure length and the heat transfer is conduction-

dominated. Mobedi[16] focused on the natural 

convection in a square enclosure with horizontal 

conductive walls; the results showed that the heat 

transfer rate is also affected by the combination of 

Rayleigh number and the thermal conductivity ratio. 
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For the situation of single convection in both two and 

three-dimensional enclosures, many works include the 

effect of imperfectly insulated horizontal walls [6, 13]. 

The investigation of Leonardi et al. [14] shows that the 

3-D flow structures depend strongly on the thermal 

boundary conditions. As a consequence, the overall 

heat flux is influenced. 

Double diffusive natural convection is generated by 

buoyancy due simultaneous to temperature and 

concentration gradients. This mode of heat and mass 

transfer has aspecific interest in several fields such as 

drying processes, crystal growth processes, solar 

desalination, etc. Principles of thermo solutal 

convection are well documented by Bejan [2]. In the 

problem of double diffusion, two physical 

configurations may be encountered. On the first, heat 

and mass gradients are imposed horizontally along the 

enclosure [6, 7, and 13], while in the second, heat and 

mass gradients are imposed vertically [11]. In both 

cases, the gradients may be aiding or opposing each 

other’s. The main objectives of these works are usually 

the numerical study of resulting flow structures for 

several dimensionless parameters. The most important 

and interesting convective phenomena occur at the 

transiting between thermally and solutal driven flows. 

As discussed by Nishimura et al. [13], this transition 

takes place when the buoyancy ratio isclose to 1. A 

few of studies are interested in the 3D double diffusive 

natural convection. Sezai and Mohamed [15] studied 

thermosolutal natural convection in a cubic enclosure 

subject to horizontal and opposing gradients of heat 
and solute, they indicated that the double-diffusive 

flow in enclosures was strictly three-dimensional for a 



Ghachem et al. / IJME, Vol. 1, Issue 3, 2013, pp. 131-138 

 

132 
 

certain ranges of Rayleigh number, Lewis number and 

buoyancy ratio respectively. The same configuration 

was studied by Abidi et al. [16] but with heat and mass 

diffusive horizontal walls. They mentioned that the 

effect of the heat and mass diffusive walls was found 

to reduce the transverse velocity for the thermal 

buoyancy-dominated regime and to increase it 

considerably for the compositional buoyancy-

dominated regime. Ghachem et al. [18] studied 

numerically double diffusive natural convection and 

entropy generation in three-dimensional solar dryer 

with an aspect ratio equal to 2. They found that the 

variation of the buoyancy ratio affects significantly the 

isotherms distributions, iso-concentrations and the 

flow structure. Particularly for N=1, the flow is 

completely three-dimensional. Besides, they found that 

all kinds of entropies generation present a minimum 

for N=1. This result is due to the competition between 

thermal and compositional forces. These entropies rise 

considerably when N grows. On the one hand, the 

maximum of Bejan number is found for N=1 witch 

indicated the domination of heat and mass 

irreversibilities. Outside, friction irreversibilties are 

largely dominant. On the other hand, distribution of 

Local Nusselt numbers changes with changing 

buoyancy ratio and take a complex structure for N=1. 

Costa [12] studied numerically the double-diffusive 

natural convection in a square enclosure with 

horizontal heat and mass diffusive walls. The main 

objectives of his study were the formulation of a 

mathematical model for this problem and the analysis 

of the effects of the heat and mass transfer 

participating walls. His analysis was restricted to 

particular combinations of the governing 

dimensionless parameters for a cavity filled with moist 

air. 

This study addresses the effect of the change of the 

upper and lower side’s boundary conditions of a cubic 

cavity, on the heat and mass transfer on the one hand 

and on the entropy created on the other hand. 

 

2. Nomenclature 

C 
Dimensionless concentration 

C ))''/()''(( lhl CCCC   

D Mass diffusivity 
Gr Grashof number 

g Acceleration of gravity 

H Enclosure heigh 
k Thermal conductivity 

Le Lewis Number 

N buoyancy ratio 
Pr Prandtl number 

'q


 Heat flux vector 

Ra Rayleigh number 
Sc Schmidt number 

Sh  Sherwood number 

genS '
 

generated entropy 

t 
dimensionless time  

(t=
2/'. lt  ) 

T 
dimensionless temperature 

 T=[ )]''/()''( chc TTTT   

cT '  cold temperature 

hT '  hot temperature 

V


 
dimensionless velocity vector  

( /'.lVV


 ) 

W enclosure width 

Greek symbols 

α Thermal diffusivity (m².s-1) 

β
 

Expansion coefficient  (m3.kg-1) 

Φ’
 

Dissipation function 
ρ Density  

μ
 

Dynamic viscosity 

ν Kinematic viscosity 

0  
Characteristic speed of fluid 

( l/0   ) 




 
Dimensionless vector potential 

 (  /'


 ) 




 
Dimensionless vorticity 

(
2/'. l


 ) 

 

Subscripts 
 

c compositional 

t Thermal 

o Initial 
x, y, z Cartesian coordinates 

 

Superscript 
 

'
 

Dimensional variable 

 

3. Mathematical formulation  
The geometry of the cubical cavity under analysis and 

the coordinate system are shown in Figure 1. The 

vertical sides walls (x=0 and x=1) are maintained at 

constant and uniform different levels of temperature 

and concentration, thus giving rise to three 

dimensional double diffusive natural-convection 

problem. However, the upper and down side walls 

(y=0 and y=1) are subject of different cases of 

boundary conditions studied later which are: adiabatic 

boundary conditions (case 1), uniform temperature 

(case 2), uniform concentration (case 3) and finally 

uniform temperature and concentration. The other 

faces (z=0 and z=1) are considered adiabatic. 

The fluid contained in the cavity is assumed 

incompressible and the flow follows the approximation 

of Boussinesq. 

The governing equations that describing the double 

diffusive natural convection are the equations of 

continuity, of momentum, of energy and species 

diffusion:   

0'. V
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Figure 1.Physical model 

 

In order to eliminate the pressure term, which is 

delicate to treat, the numerical method used in this 

work is based on the vorticity-vector potential 

formalism )( 


 . For this, one applies the rotational 

to the equation of momentum. The vector potential and 

the vorticity are, respectively, defined by the two 

following relations: 
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(5) 

 

Based on the dimensionless variables the governing 

equations can be written as:   
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The physical boundary conditions can be defined for 

all the variables, as follows: 

 

Temperature 1T  at 1x  
 0T  at 0x  

0




z

T

 

at z=(0,1) adiabatic walls 

Concentration: 1C  at 1x  
 0C  at 0x  

0




z

C  at z=(0,1)  impermeablewalls 

At y=(0,1) three cases areevoked:  

 Case 1 T=1 and 
0





y

C  

 
Case 2 0





y

T
and C=1 

 Case 3: T=1 and C=1 

  

Vorticity: 0x  
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on all walls 

 

The local entropy generation rate in a three-

dimensional flow with single diffusing specie of 

concentration (C) can be written as [11]: 
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(10) 

 

Where Co and To are respectively the reference 

concentration and temperature. The dimensional form 

of the local entropy generation is as follow: 
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The first term of NS represents the thermal 

irreversibility, it is noted NS-th. The second term, NS-fr, 

represents the viscous irreversibility and the third term, 

NS-dif., represents the diffusive irreversibility. NS gives 

a good idea on the profile and the distribution of the 

generated local dimensionless entropy.  The total 

dimensionless generated entropy is written as follow: 

 

diffrthtot

v

difsfrsths

v

stot

SSSS

dvNNN
v

dvNS



  

1

 
(12) 

 

Bejan number (Be) is the ratio of heat and mass 

transfer irreversibility to the total irreversibility due to 

heat transfer and fluid friction:  
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Dimensionless irreversibility distribution ratios  

( 1 , 2 and 3 ), are given by: 
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(14) 

For N = 0, there is no mass diffusion and we assume 

that the thermal and species diffusions are opposed. 

 

4. Results and discussions 
Numerical results are presented for Pr=0.71, Le=1.2 

and Ra is fixed at 10
5
. The buoyancy ratio is varied 

and three values are tested: N=0.5, N=1, N=2. The 

dimensionless irreversibility distribution ratios (φ1, φ2, 

φ3) are fixed respectively at 10
-4

, 0.5 and 10
-2

 [18].  

 

Four boundary conditions will be treated in this 

section. The first one is the adiabatic boundary 

condition. In witch all the vertical and horizontal sides 

of the cavity will be adiabatic with the exception of the 

sides x=0 and x=1 which are subject of opposite 

gradient of temperature and concentration. This case 

will be considered as the standard configuration which 

is treated earlier by many authors [6, 10, and 15].  

For the other cases of study, vertical sides (z=0 and 

z=1) will be maintained adiabatic. Although, the upper 

and down side are subject of different boundary 

conditions in the one side, they are maintained at 

uniform temperature, in the other side, they will be at 

uniform concentration and finally, they will be at 

uniform temperature and concentration. Two aspects 

will be discussed, namely: the flow structure behaviour 

and the heat and mass transfer and the entropy 

generation.  

4.1. Flow structure and Heat and mass transfer 

This section is devoted to the study of the flow 

structure in the one hand and to study the heat and 

mass transfer for each boundary condition tested, on 

the other hand. 

4.1.1. Adiabatic boundary conditions 

Figure 2(a) presents the projection of the velocity 

vector in the middle XY plan when N=0.5. 

 

 N=0.5 N=1 N=2 

(a) 

   

(b) 

   

(c) 

   
Figure 2 : projection of the velocity vector in the middle plan 

X-Y (a), iso-surfaces of temperature (b) and concentration (c) 

when the boundary conditions are adiabatic 

 

Two thermal cells are turning in the same direction. 

Flow is thermal dominated. Figure 2 (b) and figure 2 

(c) show the plots of isotherms and isoconcentrations. 

The first point to make is that the two plots of iso-

surfaces of temperature and concentration have the 

same behavior. In fact, the thermal and solutal 

gradients are tightened near the down party of the hot 

wall and the top party of the cold wall. Moreover, 

vertical stratification is mentioned in the core of the 

cavity.   
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For N=1 (figure 2), the two thermal cells disappear and 

one central cell takes place. Also, three solutal cells 

appear: one is close to the top corner of the hot wall; 

however the two other are located at the top corner and 

at the down corner of the cold wall. Isothermal and 

isoconcentration profiles show that the thermal and the 

solutal gradients decrease.  

When N=2, the flow becomes mono cellular and it is 

characterized by one cell with two inner vortexes 

turning counter the clockwise. The isothermal and is 

concentration profiles showed that the flow is solutal 

dominated by the increase of the stepper gradient near 

the top part of the hot wall and the down part of the 

cold wall. 

4.1.2. Uniform temperature at the upper and down side  

In this case of study, the side x=0 and y=(0, 1) are 

subject of uniform temperature (T=1) and the other 

walls (z= (0, 1)) are maintain adiabatic.  

For N=0.5 (figure 3), the flow is characterized by one 

thermal cell situated in the center of the cavity and 

turning in the clockwise. Two solutal cells are 

localized simultaneously at the top and at the down 

corner of the hot wall and turning counter clockwise.  

When N=0.85, two contra-rotative cells occupy the 

entire of the cavity.  

For N=1, the flow is characterized also, by two contra-

rotative cells with a dominance of the thermal cell. 

When N=2, the flow become with two solutal cells, 

one stretched to the hot wall and the other to the cold 

wall and turning in the opposite direction of the 

clockwise. One notes the existence of a small vortex 

near at the top corner of the cold wall. 

The plots of isotherms show that the vertical 

stratification, appeared earlier when the boundary 

condition were adiabatic, becomes horizontal (figure 

4.a). All the isothermals are connected to the top and 

down corner of the cold wall. When N=0.5, the 

distortion of these isotherms is deviated to the bottom 

of the cavity.  

 

 

 

N=0.5 

 

N=0.85 

 

N=1 

 

N=2 

(a) 

    
Figure 3. Projection of the velocity vector in the middle plan 

X-Y  

 

By the increase of the N values, the horizontal 

stratification is more developed and becomes near the 

top wall of the cavity. The 3D aspect is more 

pronounced. Plots of isoconcentration still with the 

same aspect that those of the adiabatic boundary 

condition. However, one notes the existence of more 

distortion in the core of the cavity. 

 

 

 

N=0.5 

 

N=1 

 

N=2 

(a) 

   

(b) 

   
Figure 4. Iso-surfaces of temperature (b) and concentration 

(c) when the uniform temperature at the upper and down side  

 

The stratification of the isoconcentration are inversed 

for N=1 with an increase of the solutal gradient near 

the down party of the cold wall. For N=2 the vertical 

stratification is more developed. 

4.1.3.Uniform concentration at the upper and down side  

Figure 5 presents the projection of the velocity vector 

in the middle plan X-Y for different values of 

buoyancy ratio and the iso-surfaces of temperature and 

concentration when the upper and down walls are at 

uniform concentration and adiabatic.  

 N=0.5 N=1 N=2 

(a) 

   

(b) 

   

(c) 

   
Figure 5. Projection of the velocity vector in the middle plan 

X-Y (a), iso-surfaces of temperature (b) and concentration (c) 

when the boundary conditions are uniform 

 

When N=0.5, the flow is characterized by one cell 

with two inner vortexes which turning in the opposite 

sense. Furthermore, one solutal vortex appears in the 

down corner of the cold wall and turning in the 

clockwise. For N=1, two contra-rotative cells appear in 

the cavity. When N=2, one central cell takes place and 

two small vortex appear respectively at the top and 

down corner of the hot wall.  
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By analyzing the plots of isotherms, the most 

important remark is the appearance of a central 

stratification for N=2.  

Moreover, the location of the stepper gradient is 

inversed witch mentioned the importance of the 

buoyancy forces.  

4.1.4. Uniform temperature and concentration at the 

upper and down side 

In this case, boundary conditions are simultaneously at 

uniform temperature and concentration in the upper 

and down walls of the cavity. Plots of isotherms and 

isoconcentration present similar profiles (figure 6). For 

N=0.5, the flow structure is characterized by one 

thermal central cell witch rotating in the clockwise. 

For N=1, the flow is characterized by two contra-

rotative cells. The thermal cell is localized near the 

down corner of the hot wall although the solutal cell 

occupies the rest of the cavity. 

By the increase of N value, two solutal cells appear 

and rotating in the same direction. 

 N=0.5 N=1 N=2 

(a) 

   

(b) 

   

(c) 

   
Figure 6. Projection of the velocity vector in the middle plan 

X-Y (a), iso-surfaces of temperature (b) and concentration (c) 

when the boundary conditions are at uniform temperature and 

concentration 

4.2. Entropy generation 

4.2.1. Adiabatic boundary conditions 

Figure 7, presents the entropy generation when 

boundary conditions are adiabatic. Regardless The 

buoyancy ratio, thermal and solutal entropies are 

located near the active walls (figure 7 (a) and (b)).That 

said, when N=1, the contour of thermal entropy 

becomes close to the lower half of the hot wall and to 

the upper half of the cold wall. However, the solutal 

entropy is restricted to the bottom of the hot wall and 

upward from the cold wall and reaches a maximum 

equal to 40.876. When thermal and compositional 

forces are equals(N=1), the total generated entropy is 

distributed on the entire cavity and not localized near 

walls, which implies a suppression of boundary layer 

phenomenon met in other cases [18].  

 N=0.5 N=1 N=2 

(a) 

   

(b) 

   

(c) 

   

(d) 

   
Figure 7. Entropies generation in the XY plan for different N 

when the boundary conditions are adiabatic; (a) thermal, (b) 

compositional; (c) friction and (d) total 

4.2.2. Uniform temperature at the down at upper side of 

the cavity 

For N=0.5, the maximum value of the thermal entropy 

evolves from 35.82, in the case of adiabatic boundary 

condition, to138.29inthis case of study.  

 N=0.5 N=1 N=2 

(a) 

   

(b) 

   

(c) 

   

(d) 

   
Figure 8. Entropies generation in the XY plan for different N 

when the boundary condition are at uniform temperature; (a) 

thermal , (b) compositional; (c) friction and (d) total 
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This Value of thermal entropy remains practically 

identical in the case where N= 1 and N = 2. Besides, 

contours of thermal entropy become localized on the 

one hand, between the upper parts of the cold wall and 

near the top wall. On the other hand, it is situated in 

the bottom corner of the cold walls. By the increase of 

N, these contours are spread throughout the top wall, 

the cold wall and a portion of the hot wall. The solutal 

entropy contours are closer to the active walls with a 

maximum value reaches 138.675 when the buoyancy 

ratio is equal to 2.  

4.2.3. Uniform concentration at the upper and down 

boundary condition 

In this case of study, the thermal entropy generation is 

close to the active wall for N=0.5 and N=2. However, 

it is spread in the entire cavity when the buoyancy 

ratio is equal to 1. The maximum value of the solutal 

entropy reaches height values: 141.438 for N=0.5, 

139.93 for N=1 and 137.584 for N=2. When N=0.5, 

solutal entropy is close to the cold and bottom wall 

whereas N=2, it is closer to the cold and top wall of 

the cavity. 

 N=0.5 N=1 N=2 

(a) 

   
(b) 

   
(c) 

   
(d) 

   
Figure 9. Entropies generation in the XY plan for different N 

when the boundary condition are at uniform concentration; 

(a) thermal , (b) compositional; (c) friction and (d) total 

4.2.4. Uniform temperature and concentration at the 

upper and down boundary conditions 

When N=0.5 (figure 10), the thermal and 

compositional entropy are located close to the cold 

wall and at the half party of the down wall which is 

conductive and diffusive at the same time. When N=1, 

all the kind of entropies generation are located at the 
top and down corner of the cold wall. When N=2, 

thermal and solutal entropies become close to the cold 

wall and to the top wall. Entropy due to the friction 

increases when the flow is solutal dominated this 

shows the increase of the viscous irreversibility by the 

increase of the buoyancyratio. 

 

 N=0.5 N=1 N=2 

(a) 

   

(b) 

   

(c) 

   

(d) 

   
Figure 10. Entropies generation in the XY plan for different N 

when the boundary condition are diffusive and conductive; (a) 

thermal , (b) compositional; (c) friction and (d) total 

 

The variations of the mean Bejan number as function 

of N (figure11) shows that the maximum values of 

Bejan numbers are detected for the mixed boundary 

conditions regardless the buoyancy ratio.  

For N=1 this variation presents a peak indicating a 

maximal domination of the heat and mass transfers 

irreversibility. Bejan number is equal to 0.99 this 

shows that the heat and mass transfer irreversibility are 

dominating those due to the flow friction.  

 
Figure 11. Effect of Boundary condition on the Bejan number 

for different N 
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5. Conclusion 
Numerical analysis of double diffusive natural 

convection and entropy generation in three-

dimensional cavity is performed in this study. Some 

conclusions can be drawn: 

By the modification of the boundary conditions the 

transition of flow between thermal and solutal 

dominated takes place for different values of the 

buoyancy ratio. 

The maximum values of thermal entropy are detected 

for all tested N values when the boundary conditions 

are: conductive or simultaneously conductive and 

diffusive. Nevertheless, the maximum values of 

diffusive entropy are detected for N=0.5 and N=1 

when the boundary condition is diffusive or 

simultaneously diffusive and conductive. When N=2, 

the maximum values are detected for conductive 

boundary condition or for diffusive boundary 

condition. 

Finally, the maximum of Bejan number is detected for 

N=1 when the boundary condition are simultaneously 

conductive and diffusive. In fact, Bejan number 

reaches 0.99 and the thermal and diffusive 

irreversibility dominate the friction irreversibility. 
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