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Abstract - In this study, the mixed convective heat transfer in a lid driven cubic cavity at is investigated numerically. Two cases are 

negotiated, the top moving lid and the bottom walls are at constant uniform temperatures (case 1: Ttop > Tb, case 2: Ttop < Tb) while 

the vertical walls are thermally insulated. The Reynolds number is fixed at Re=100, while the Richardson number is varied from 

0.001 to 10. The effect of temperature gradient orientation on the fluid flow and heat transfer has been performed. It is shown that the 

downward temperature gradient yields a better heat transfer rate than the upward temperature gradients (case 1).   Multiple 

correlations in terms of the heat transfer rate and Richardson number has been established. 
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1. Introduction 

 1 In recent years the mixed convection in rectangular 

or square cavities has been investigated by many 

researchers. This attempt is due to the fact that heat 

transfer in a cavity can be found in many industrial and 

engineering applications such as electronic component 

cooling, food drying process, nuclear reactors etc… 

Flow and heat transfer phenomena caused by buoyancy 

and shear forces in enclosures have been studied 

extensively in the literature. For example, Iwatsu and 

Hyun [1] studied numerically three dimensional flows 

in cubical containers. The top moving wall is 

maintained at a higher temperature than the bottom 

wall. Numerical solutions are obtained over a wide 

range of physical parameters, 102 ≤  Re ≤  2×103,   
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0 ≤  Ri  ≤ 10 and Pr = 0.71. 

Numerical flow visualizations demonstrate the explicit 

effects of Ri as well as Re. Mohamed and Viskanta [2] 

investigated the effects of a sliding lid on the fluid 

flow and thermal structures in a lid-driven cavity. 

Moallemi and Jang [3] studied numerically mixed 

convective flows in a bottom heated square lid-driven 

enclosure. They investigated the effect of Prandtl 

number on the flow and heat transfer process. They 

found that the effects of buoyancy are more 

pronounced for higher values of Prandtl numbers, and 

they also derived a correlation for the average Nusselt 

number in terms of the Prandtl number, Reynolds 

number and Richardson number. Prasad and Koseff 

[4] performed an experimental investigation of mixed 

convection flow in a lid-driven cavity for different 

Richardson numbers, ranging from 0.1 to 1000. Their 

results indicate that the overall heat transfer rate is a 
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very weak function of the Grashof number for the 

examined range of Reynolds numbers. They have also 

analyzed the mean heat flux values over the entire 

boundary to produce Nusselt number and Stanton 

number correlations which are very useful for design 

applications. Sharif [5] performed a numerical 

investigation with supplementary flow visualization of 

laminar mixed convective heat transfer in 

two-dimensional shallow rectangular driven cavities 

of aspect ratio 10. The top moving plate of the cavity 

is set at a higher temperature than the bottom 

stationary plate. Computations are reported for 

Rayleigh numbers ranging from 105 to 107 while 

keeping the Reynolds number fixed at 408.21, thus 

encompassing the wide spectrum of dominating 

forced convection, mixed convection, and dominating 

natural convection flow regimes. The fluid Prandtl 

number is taken as 6, representative of water. The 

effects of inclination of such a cavity on the flow and 

thermal fields are also investigated for inclination 

angles ranging from 0° to 30°. The author observed 

that the local Nusselt number at the heated moving 

plate starts with a high value and decreases rapidly to 

a small value towards the right side. The local Nusselt 

number at the cold plate reveals an oscillatory 

behavior near the right side due to the presence of a 

separation bubble at the cold surface in that location.  

 In the present work, the effect of temperature 

gradient orientation on the fluid flow and heat transfer 

in a lid-driven square cavity is investigated 

numerically. 

2. Mathematical formulation 

2.1 Governing equations 

 For laminar, incompressible and three-dimensional 

mixed convection, after invoking the Boussinesq 

approximation and neglecting the viscous dissipation, 

can be expressed in the dimensionless form as: 

Continuity equation: 
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Energy equation: 
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Where, u, v and w are the velocity components in the 

x, y and z directions, respectively, θ is the temperature 

and P is the pressure. ρ is the density and g is the 
gravitational acceleration. In Eq. (2), the symbol 3i  

stands for the Krönecker delta. The chosen scales in 

Eqs. (1) – (3) are the length H , the velocity

0u g H T  , the time 
0

0

H
t

u
   and the pressure

2
0 0P u . Further, the non-dimensional temperature is 
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numbers seen above, Gr, Re, Pr and Ri are the 

Grashof number, Reynolds number, Prandtl number 

and Richardson number, respectively, and they are 

defined as:
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2.2 Initial and Boundary conditions 

 No slip condition at bottom and side walls. The 

upper lid has a constant velocity, u0. The upper lid 

wall has an isothermal condition with temperature, 

T=TH. The bottom wall is at rest and isotherm, i.e., 

T=TC (TC < TH). Finally, the remaining walls are 

adiabatic (see Fig.1). 

(2) 
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2.3 Numerical procedure 

 Numerical computations were carried out with an 

in-house computer code written in the FORTRAN 

programming language. 

 In the FORTRAN code, the unsteady 

Navier–Stokes and energy equations are discretized by 

a second-order time stepping finite difference 

procedure. The procedure adopted here deserves a 

detailed explanation. First, the non-linear terms in 

Eqs. (2) are treated explicitly with a second-order 

Adams–Bashforth scheme. Second, the convective 

terms in Eq. (3) are treated semi implicitly. Third, the 

diffusion terms in Eqs. (2) and (3) are treated 

implicitly. In order to avoid the difficulty that the 

strong velocity-pressure coupling brings forward, we 

selected a projection method described in the work of 

Peyret and Taylor [6],  Achdou and Guermond [7].   

 A finite-volume method is implemented to 

discretize the Navier–Stokes and energy equations 

(Patankar [8], Moukhalled and Darwish [9], 

Kobayachi and Pereira [10]). In this method, the 

solution domain is subdivided into small finite 

control volumes (CV). The grid used is more refined 

than that in areas in need and bigger in other zones.  

In fact, it is necessary to use a fine mesh at the top 

and bottom wall, capable of accurately modeling the 

heat transfer and flow. With this approach, we can 

reduce the number of grid points without losing 

accuracy of calculation. 

 The advective terms in Eqs. (2) are discretized 

using a QUICK third-order scheme whereas a 

second-order central differencing (Hayase, 

Humphrey and Greif [11]) is applied in Eq. (3). The 

discretized momentum and energy equations are 

solved employing the red and black successive over 

relaxation method (RBSOR) [12], while the Poisson 

pressure correction equation is solved utilizing a full 

multi-grid method (Hortmann, Peric and Scheuerer 

[13], M.S. Mesquita and M.J.S. de Lemos [14],     

E. Nobile [15]). If specific details about the 

computational methodology are needed, the reader is 

directed to Ben-Cheikh et al. [16]. Finally, the 

convergence of solutions is assumed when the relative 

error for each variable between consecutive iterations 

is recorded below the convergence criterion ε such 

that: 

  

kji

m
ijk

m
ijk

,,
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Here,  represents a dependent variable u, v, w, or θ, 

the indexes i, j, k indicate a grid point, and the index 

m is the current iteration at the grid level. The 

convergence criterion was set to 10−6. 

 
Fig.1: Physical model and boundary conditions for two 
cases. 

 
 
 
 
 
 

Case 1 

 

Case 2 
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3. Code validation    

Table 1 Grid independency results for Re = 100, γ = 0° 

 Ri=0.001 Ri=1 Ri=10 
Grid 483 643 483 643 483 643 

Nusselt number 1.8371  1.8367 1.3487 1.3487 1.0927 1.0928 

 

Table 2 Comparison of the computed average Nusselt number at the top wall. 

 

The present numerical code is validated against a 

documented numerical study. Namely, the numerical 

solution reported by Iwatsu and Hyun [1]. The 

findings of the comparisons are documented in Table 

2 for the average Nusselt number. The comparisons 

illustrate close proximity in the predictions made   

between the various solutions. These validation cases 

boost up the confidence in the numerical outcome of 

the present work. 

 The effect of grid resolution was also examined in 

order to select the appropriate grid density. Table 1 

presents the results of a grid independency study 

showing the effects of number of grid points on 

Nusselt. A 483 non uniform grid is found to meet the 

requirements of both the grid independency study and 

the computational time costs. 
 
4. Results and discussion 
 The effects of temperature gradient orientation on 

the steady state streamline, temperature, and Nusselt 

number are presented in the subsequent sections for 

three Richardson numbers. The Richardson number 

provides a measure for the relative importance of the 

thermal natural convection to the lid driven forced 

convection effect. The Richardson number is varied 

from 0.001 to 10 while Reynolds number is fixed at 

Re = 100. This variation gives transition from the 

natural convection dominated to forced convection 

dominated regimes. 

4.1 Upward and downward temperature gradients 

 The influence of the upward temperature gradient 

(case1) on the transport phenomena is shown in Fig. 2  

for Ri = 0.001, 1, and 10. For Ri = 10, the flow 

patterns are characterized by three primary 

recirculating counter-rotating vortices. This yields the 

stable stratification of temperature distribution as seen 

in subfigure 2c. The distribution of isotherms 

basically implies that the cavity is in a 

quasi-conduction domain, i.e., most of the heat 

transfer occurs due to conduction except that near the 

sliding top wall. As Ri is decreased to 1 (subfigures 2b 

and 2e), the bottom cell becomes feeble and 

amalgamate with the upper adjacent cell to provide 

only two extensive counter rotating cells. When Ri is 

further decreased to 0.001 (subfigures 2a and 2d), the 

effect of the mechanically driven top lid dominates the 

entire cavity and generates a primary recirculating 

vortex. 
Ri=0.001 Ri=1 Ri=10 

 
(a)  (b)  (c) 

 
(d) (e) (f) 

Fig.2. Computed isotherms (a,b and c) and streamlines (d,e 
and f) contours for case 1 and Ri = 0.001, 1 and 10.  

Re                Ri=0.001                                Ri=1                               Ri=10  
Ref[1] Ref[17] Pres.work Ref[1] Ref[17] Pres.work Ref[1] Ref[17] Pres.work 

100 1.82 1.836 1.836 1.33 1.348 1.348 1.08 1.092 1.092 
400 3.99 3.964 3.963 1.50 1.528 1.539 1.17 1.130 1.152 
1000 7.03 7.284 7.295 1.80 1.856 1.863 1.37 1.143 1.143 
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 The effect of the downward temperature gradient 

(case 2) on the streamline and isotherm patterns for Ri 

= 0.001, 1, and 10 is shown in Fig. 3. When Ri = 10, a 

single central primary vortex is observed covering the 

cavity domain. The vortex is driven by the moving lid.  

From subfigure 3c. the isotherms are symmetrical and 

clamped in the lower part of the plane (YOZ) and also 

we observed the appearance of the plume is believed 

to be the reason for the more enhancements in heat 

transfer.  

   The temperature and flow fields in the cavity for  

Ri = 1 are presented in subfigures 3b and 3e. It can be 

seen that the distribution of streamlines for Ri = 1 is 

similar to that of Ri = 10. When Ri is further 

decreased to 0.001 (subfigures 3a and 3d), the effect 

of the mechanically driven top lid, which is similar to 

case 1 with Ri=0.001, dominates the entire cavity and 

generates a primary recirculating vortex which was 

observed for the other Richardson number. 

 
Ri=0.001 Ri=1 Ri=10 

  
(a)  (b)  (c)  

  
(d) (e) (f) 

 
Fig.3. Computed isotherms (a,b and c) and streamlines (d, e 
and f) contours for case 2 and Ri=0.001, 1 and10. 
 

 Comparisons of the computed temperature and flow 

patterns, as shown in Figs. 2 and 3, reveal that the 

characteristics of mixed convection flow exhibit 

strong dependence on the orientation of the 

temperature gradients. For the upward temperature 

gradient (case 1), the flow possesses three 

recirculating vortices and the number of vortex 

decreases with decreasing Ri. The temperature 

distribution exhibits a vertical stratification. Whereas 

for the downward temperature gradient (case 2), the 

flow patterns show only one vortex dominates the 

entire cavity. The values of temperatures in the bulk 

region of the cavity are different for different 

orientations of temperature gradients.  

4.2 Heat transfer rate and correlation 

 To examine the effects of temperature gradient 

orientation on heat transfer in the cavity, the average 

Nusselt number along the hot wall for different values 

of Ri as shown in Figs.4 and 5. For the upward 

temperature gradient (case 1) as shown in Fig. 4, the 

heat transfer rate of the top wall generally drops with 

lowering of Richardson number. 
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Fig. 4: Average Nusselt number along the hot wall for 

Re=100 (case 1). 

 For the downward temperature gradient (case 2) as 

shown in Fig. 5, the average heat transfer rate increase 

with the Richardson number. The downward 

temperature gradient (case 2) yields a better heat 

transfer rate than the upward temperature gradients 

(case 1) due to the increased buoyancy effects in the 

lower portions of the cavity. Referring to the literature 
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[18], multiple correlations in terms of the heat transfer 

rate and Richardson number has been established. 

The average Nusselt number along the heated wall is 

correlated in term of Richardson number (0.001 ≤ Ri ≤ 

10) for the two investigated cases. Using the 

numerical results, the correlation can be expressed as: 

 
Nuavg=0.7353 x 0.34Ri +1.096           (Case 1) 

Nuavg=2.243 x log (2.204+Ri0.64)      (Case 2) 

0 2 4 6 8 10
1,5

2,0

2,5

3,0

3,5

4,0

4,5

 

 

 Present work
 correlation

N
u

av
g

Ri

Fig. 5: Average Nusselt number along the hot surface for 

Re=100 (case 2). 

 

 Comparisons of the average Nusselt number between 

the numerical results and those obtained by the 

correlation are reported in Figs.4 and 5. As a result, 

the average Nusselt number computed from the above 

equations together with the numerical results agree 

well. 

 

5. Conclusion 
 Numerical simulations of mixed convection in a 

lid-driven square cavity are made to investigate the 

effects of temperature gradient orientation on the flow 

field and heat transfer characteristics for five different 

values of the Richardson number (Ri = 0.001≤ Ri≤10). 

Two different directions, namely, upward and 

downward temperature gradients, are considered in 

the present study. From the numerical results, the 

following conclusions may be drawn: 

Case 1: When large Ri is united with Re= 100, three 

primary vortices are observed circumscribed in the 

proximity of the hot and cold walls and their intensity 

and their number are modified when Ri decreased. 

The rate of heat transfer to this case decreases with the 

Richardson number. A correlation in terms of the heat 

transfer rate and Richardson number has been 

established. 

Case 2: When large Ri is united with low Re, a single 

central primary vortex is observed covering the cavity 

domain. This vortex decreases slightly when Ri 

decreased. The rate of heat transfer increases with the 

Richardson number. A correlation in terms of the heat 

transfer rate and Richardson number has been 

established also in this case. 

  Numerical results demonstrate that the downward 

temperature gradient yields a better heat transfer rate 

than the upward temperature gradients (case 1) due to 

the increased buoyancy effects in the lower portion of 

the cavity. 
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