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problem for the estimation of the optical thickness by 
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Abstract. An inverse radiation problem was considered to estimate the optical thickness for a one-dimensional 

cylindrical model of a semi-transparent, gray and isotropically scattering medium. The radiative transfer equation 

is solved using the finite volume method and the temperature is determined according to the dimension of the 

semi-transparent medium. In order to find the points which give us more information about the optical thickness 

using the measured temperatures, we carried out a sensitivity analysis. The solution of the inverse problem is 

obtained with the Levenberg-Marquardt method. The identification results were analyzed with respect to the 

number of measurements and the initial estimate of the unknown radiative property. The effect of the parameter of 

the LM method on the stability of the solution, in particular in the vicinity of the initial estimate, was also 

investigated. 
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1. Introduction 
 
1
 Heat transfer in semi-transparent media heated to 

high temperatures is a very topical field of 

investigation due, on the one hand to the high 

industrial interest of such a study (notably for the 

boilers, the furnaces and the combustion chambers 

where radiation heat transfer is dominant) and on the 

other hand, to the recent progresses observed in the 

numerical processing possibilities for the equation of 

radiative transfer in multidimensional geometries. 

The determination of the parameters which 

characterize the radiative transfer, such as the optical 

thickness and the scattering albedo is very important 

to control this phenomenon.  

Inverse radiation analysis has been concerned with 

the estimation of radiative properties from measured 

radiation quantities [1,2]. The determination of 

medium properties, such as the extinction 

coefficient, the absorption coefficient, the scattering 

albedo, the phase function, the optical thickness, and 

a gas temperature, as well as surface properties, such 

as the emissivity and a boundary temperature has 

been achieved by inverse radiation analysis from 

measured intensities or temperatures [3–8]. 

The aim of the present work is to estimate, through 

the solution of an inverse problem of thermal 

radiation, the optical thickness for a one-dimensional 

                                                           
* 

Corresponding author: Ali Fguiri 

E-mail: ali.fguiri@gmail.com 

  

cylindrical model of a semi-transparent, gray and 

isotropic scattering medium. 

The solution of the inverse problem is obtained with 

the Levenberg-Marquardt method.  

The inverse analysis using the Levenberg-Marquardt 

method consists in minimizing an error function 

representing the difference between predictions and 

experimental measurements of the responses of the 

studied system. In heat transfer, this method was 

used by Sawaf et al. [9] in the simultaneous 

estimation of the thermal conductivity and the 

volumetric heat capacity (functions of temperature), 

Lazard et al. [10] in determining the diffusivity of a 

semi-transparent medium and Kanevce et al. [11] in 

the identification of a diffusion coefficient 

(depending on the temperature). Mejias et al. [12] 

used two versions of the Levenberg-Marquardt 

method and four versions of the conjugate gradient 

method for comparing the identification results of 

the thermal conductivity values in three directions. 

The radiative transfer equation is solved using the 

finite volume method and the temperature is 

determined according to the dimension of the semi-

transparent medium. A sensitivity analysis is carried 

out in order to find the points which give us more 

information about the optical thickness using the 

measured temperatures.  

Identification of the optical thickness is carried out 

using simulated measurements of temperature where 

exact and noisy values are considered. Effects of the 
number of measurements and the noise level on the 

inverse solution are studied. The convergence of the 
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LM method is analyzed when using initial estimates 

sufficiently distant from the exact values. The effect 

of the parameter of the LM method on the stability 

of the solution, in particular in the vicinity of the 

initial estimate, is also investigated.   
 

2. Formulation of the direct problem 
2.1. Model description  

As shown in Figure 1, the model under study is a 

semi-transparent medium confined between two 

infinite coaxial cylinders of radius re and ri (re>ri) 

whose surfaces are maintained respectively to the 

temperatures Te and Ti (Ti>Te). The medium is 

considered gray and of isotropically scattering and 

the boundary surfaces are assumed to be diffusely 

emitting and reflecting, having the same emissivity. 

 
 

 

 
 

 

 

 

 

 

Fig. 1. Schematic of the physical system 

 

2.2. Radiative transfer equation (RTE) 

The radiative transfer equation for absorbing-

emitting and isotropically scattering medium, is 

writen as 
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I(s, ) is the radiation intensity in the direction   

at the position s. I
0
 is the blackbody radiation 

intensity. 

The radiative boundary condition for a diffusely 

emitting and reflecting wall, is written as 
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where n  is a unit vector normal to the control 

volume surface. 

 

2.3. The finite volume method 

The finite volume method for radiative heat transfer 

divides the computational domain into a finite 

number of control volumes and the total solid angle 

into an arbitrary number of solid angles (Figure2). 

The control solid angle ΔΩ
l
 was calculated 

analytically by 
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Fig. 2. (a) Control solid angle and (b) Spatial 

control volume. 

 

The integration of equation (1) over an arbitrary 

control volume Δv and a control angle ΔΩ
l
 gives 
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By assuming constant the magnitude of the intensity 

but allowing its direction to vary within the control 

volume and the control angle, the following finite-

volume formulation can be obtained  
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The term 
l

iN , evaluated analytically, takes into 

account the variation of the intensity direction within 

ΔΩ
l
, 

 
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
l

dnN il
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1
                 (8)                                              

Equation (6) indicates that a net outgoing radiant 

energy across the control-volume faces must be 

balanced by a net generation of radiant energy 

within the control volume and the control angle. 

Using the step scheme (Chai et al [13]), equation (1) 

becomes 
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The radiative boundary condition (equation (3)) for a 

diffusely emitting and reflecting wall can be 

discretized as 
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3. The Levenberg-Marquardt method 
The inverse problem studied in this paper is 

regarded as an optimization problem of parameter 

estimation where the Levenberg-Marquardt method 

is applied as the estimation technique. This method 

is an iterative procedure based on the minimization 

of a cost function and whose algorithm is a 

combination of the Gauss method and the Steepest 

Descent method. The solution of the problem is 

obtained when the vector of unknown parameters P 

minimizes the following sum of squares function 

[14]: 
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where M is the number of sensors, Y is the vector of 

measured temperatures and T(P) is the vector of 

calculated temperatures obtained from the solution 

of the direct problem by using the current available 

estimate for the unknown parameters vector P. The 

norm of squared residues S is minimized by 

differentiating equation (18) with respect to each of 

the unknown parameters Pj (j =1…p) and then 

setting the resulting expression equal to zero 

yielding to the following set of algebraic equations: 
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Due to the nonlinearity of this system of equations, 

an iterative technique is necessary for its solution. 

The iterative procedure of the Levenberg-Marquardt 

method is given by [14,16]: 
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where J is the jacobian matrix which elements, 

known as the sensitivity coefficients, are written as: 
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and µ is a damping parameter added to the diagonal 

of (J
T
J) in order to control the stability of the 

algorithm. Iterations are generally started with large 

values of μ. Then this parameter is gradually 

reduced as the solution approaches the converged 

result. In this one unknown parameter case, the 

vector P is reduced to a scalar quantity (P=τ) 

(optical thickness) and the jacobian matrix is 

reduced to a vector written as: 
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4. Results and discussion 

4.1. Sensitivity analysis   

The solution of the direct problem is obtained by 

considering known all the 

radiative parameters. Indeed the RTE is solved using 

the finite volume method, which allowed us to 

determine the temperature distribution in the 

participating medium confined between the two 

concentric cylinders. The spatial domain is divided 

into Nr = 20 control volumes. The solid angle is 

divided into (2 × 12) elementary solid angles. We 

put: 
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Our model is a semi-transparent medium confined 

between two coaxial infinitely long cylinders, 

where the two cylindrical surfaces 

are respectively brought to the temperatures              

( 0 and 1*  *
ei TT ). Figure 3 shows the variation 

of the temperature (T*) depending on the 

radius (r*) for different values of the optical 

thickness. It is noted that increasing the optical 

thickness increases the temperature level. This is 

because if the medium becomes optically 

thick, radiative energy will be absorbed by the 

medium which sees its temperature increases. In the 

opposite case, the radiative energy 

is easily transferred to the cold surfaces where the 

temperature of the medium decreases. 

 

 

 

 

                                                                                                   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Before starting the identification, a sensitivity 

analysis should be carried out in order to choose the 

points of temperature measurements that give 

us more information on the optical thickness. We 

define the reduced sensitivity to the optical 

thickness by the following expression: 


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Figure 4 shows the variation of the reduced 

sensitivity to the optical thickness as a function 

of r*. We note that the sensitivity is greater away 

from the end (r * = 1) and approaching the end 

(r * = 0). Thus, it is wiser to place the 

points of temperature measurement for the 

identification of the optical thickness nearest to 

the inner cylinder. 

 

4.2. Identification     
In this section, we focus on the identification of a 

single radiative property (optical thickness) based on 

the results of the direct problem and the sensitivity 

analysis, and we study the effect of 

some parameters on the identification. 

For the measurements needed in the identification, 

we use noisy simulated temperatures obtained by 

adding a random error (white, additive, uncorrelated, 

with zero mean and constant variance) to the 

solution of the direct problem, as follows [15]: 

Y=Texact+ r.                          (24)                                                           

where  is the standard deviation of measurement 

errors and r is a random number lying, with 99% of 

probability, in the range -2.576 < r < +2.576 if 

normal (Gaussian) distribution of errors is 

considered. 

Texact is the temperature calculated using the solution 

of the RTE using the exact value of the optical 

thickness (τexact=4). 

 
4.2.1. Identification with exact temperatures 

Figure 5 represents the identification of the optical 

thickness using exact temperatures. For the three 

curves 5 (a, b and c) we obtain the convergence of 

the Levenberg-Marquardt method to the exact value 

of the optical thickness.  

 

Figure (5.a), shows the effect of the Levenberg-

Marquardt parameter µ° on the identification. The 

iterative algorithm reaches the exact value of the 

optical thickness faster by reducing μ° from 100 to 

0,001. It is noted from Figure (5.b) that we 

can reach the same exact value by choosing an initial 

value of the optical thickness sufficiently far from 
the exact value (τ° = 0.01 and τ° =7).  
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Fig.4. Reduced sensitivity to the                                                                 

optical thickness 

 

Fig.3. Influence of  the optical thickness 

on the temperature 

 

 

(a): Identification of the optical 

thickness with τ
0
=1 and np=15, for 

different values of μ°. 

(b): Identification of the optical 

thickness  with μ° = 1 and np = 15, 

for different values of the initial 

choice of  the optical thickness (τ°) 

(c): Identification of the optical 

thickness with μ° = 1 and τ° = 1, for 

different number of measurement 

points (np) . 
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Figure (5.c) represents the identification of the 

optical thickness by varying the number of 

measurement points (np). By increasing np we 

notice that the identification becomes better, which 

is explained by the fact that we have 

more information about the optical thickness. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.5 (a): Identification of the optical thickness 

with τ
0
=1 and np=15, for different values of μ°. 

 

 
 

 

 
 

 
 

 

 
 

 
 

 

 
 

 

 

 

Fig.5 (b): Identification of the optical thickness  

with μ° = 1 and np = 15, for different values of the 

initial choice of  the optical thickness (τ°) 

 

 
 

 

 
 

 
 

 

 
 

 

 
 

 
 

 

 
 

Fig.5  (c): Identification of the optical thickness 

with μ° = 1 and τ° = 1, for different number of 

measurement points (np) . 

4.2.2. Identification with noisy simulated 

temperatures 
Figure 6 represents the identification of the optical 

thickness during the iterations for different values 

of the standard deviation of the measurement 

noise . It is clear that the identification is better 

for lower values of  (Table1). 

Table 1. Effect of the noise level of the 

measurements on the precision of the 

identification 

 
(K) 

0 0.1 0.5 1 5 

τ 3.9999 3.9603 3.8056 3.6215 2.4393 

Error 

(%) 
10

-4
 1 4.86 9.46 39 

 

 

 

 

 

 

 

 

 

 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Itération

1.0

1.5

2.0

2.5

3.0

3.5

4.0

é
p

a
is

s
e

u
r 

o
p

ti
q
u

e

Identification de l'épaiseur optique

µ°=0.01

µ°=0.1

µ°=1

µ°=10

µ°=100

   

τ 

a 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Itération

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

é
p

a
is

s
e

u
r 

o
p

ti
q
u

e

Identification de l'épaisseur optique











τ 
b 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Itération

1.0

1.5

2.0

2.5

3.0

3.5

4.0

é
p

a
is

s
e

u
r 

o
p

ti
q
u

e

np=4

np=6

np=8

np=10

np=15

τ 
c 



Fguiri et al. / IJME, Vol. 1, No. 2, pp.  104-109 

 

  109 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig.6. Identification of the optical thickness (τ) 

with noisy simulated temperatures 

 

5. Conclusion  
The finite volume method was used 

to solve an inverse problem of radiative transfer in a 

semi-transparent gray absorbing-emitting and 

isotropically scattering medium represented 

by a one-dimensional cylindrical geometry, with the 

aim of identifying the optical 

thickness. The radiative transfer equation, solved 

using the finite volume method, allowed us to 

determine the temperature distribution in the semi-

transparent medium. To investigate the 

feasibility of identifying the optical thickness, we 

performed a sensitivity analysis, which allowed us to 

locate the points containing best information 

on the radiative property to identify. Indeed, the 

sensitivity is higher, approaching the inner 

boundary of the semi-transparent medium. Thus, it is 

more useful for better identification of the optical 

thickness, selecting measurement points closer to 

the inner cylinder. The solution of 

the radiative inverse problem was performed using 

the Levenberg-Marquardt method whose 

convergence depends mainly on the Levenberg-

Marquardt parameter μ°, the initial 

estimate τ° and the number of measurement 

points np. 
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