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Abstract: The present work deals with the prediction of a natural convection flow in a square cavity, partially heated by an obstacle 

placed at the bottom wall. The two transverse walls and the top wall of the cavity are supposed to be cold.  The main parameter of 

numerical investigations is the Rayleigh number (engine convection) ranging from 103 to 105. Different configurations relative to 

cooling obstacle are presented and analyzed in the current study. 

The simulations were conducted using a numerical approach based on the finite volume method and the projection method, which are 

implemented in a computer code in order to solve the Navier-Stokes equations. 
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1. Introduction 

 Fluid mechanics allows to describe a wide variety of 

natural phenomena. It is of great importance in many 

fields such as aeronautics, chemistry, engineering or 

the environment. Many researchers investigated the 

fluid flow with heat transfer in environments 

incorporating isothermal obstacles or fins in confined 

cavities. 

Among others, one can cite the work of Frederick [1] 

who studied natural convection in an inclined air-filled 

square enclosure with a diathermal partition for 

Rayleigh numbers between 10 3and 10 5. The partition 

was attached to the cold wall and placed at its center. 

The partition relative length was 0.25 and 0.50 of that 

of the enclosure wall. Frederick [1] showed that the 

partition caused suppression of convection and that the 

heat transfer relative to that in an identical cavity 

without partition was reduced considerably. Tasnim 
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and Collins [2] studied the effect of attaching a high 

conducting thin fin on the hot wall of an air-filled 

square cavity. 

The effects of fin height and length, and the Rayleigh 

number on the heat transfer performance were 

investigated numerically. Tasnim and Collins [2] 

concluded that adding a fin on the hot wall increased 

the rate of heat transfer by about 31% compared with a 

wall without a fin. Bilgen [3] studied natural 

convection in differentially heated square cavities with 

a thin fin attached on the active wall. The Rayleigh 

number was varied from 104 to 109, dimensionless thin 

fin length from 0.10 to 0.90, dimensionless thin fin 

position from 0 to 0.90, dimensionless conductivity 

ratio of thin fin from 0 (perfectly insulating) to 60. 

Bilgen’s [3] results showed that the Nusselt number is 

an increasing function of Rayleigh number, and a 

decreasing function of fin length and relative 

conductivity ratio. It was also found that the heat 

transfer might be suppressed up to 38% by choosing 

appropriate thermal and geometrical fin parameters. 
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Frederick and Valencia [4] investigated natural 

convection in a square enclosure with a fin placed on 

its hot wall and with perfectly conducting horizontal 

walls. The fin length and the solid to fluid thermal 

conductivity ratio were varied. For low values of the 

solid to fluid thermal conductivity ratio and the 

Rayleigh numbers in the range 104–105, reductions in 

heat transfer relative to the un-finned case were 

obtained. Frederick and Valencia [4] showed that this 

reduction is more pronounced when long fins are used. 

Ben-Nakhi and Chamkha [5] studied numerically 

two-dimensional, laminar, conjugate natural 

convection in a square enclosure with an inclined thin 

fin of arbitrary length. The authors showed that the thin 

fin inclination angle and length, and solid-to-fluid 

thermal conductivity ratio have significant effects on 

the local and average Nusselt numbers at the heated 

surfaces of the enclosure=fin system. They also 

reported that the presence of the inclined fin reduced 

the average Nusselt number at the heated surfaces in an 

unordered way. Other relevant papers related to the 

topic can also be consulted in references [6–13]. 

In the current investigation, a numerical study in terms 

of the problem of natural convection in cavities is 

carried out. The fluid is considered Newtonian and 

incompressible, we are mainly interested in 

two-dimensional cavities incorporating an obstacle on 

its hot wall. The side walls and the upper wall are 

maintained at a cold temperature Tc, while the 

remaining walls are kept adiabatic. 

Several boundary conditions on different physical 

configurations or applications have been studied. We 

present in the first step the results for Rayleigh 

numbers ranging from 103 to 105. We present and 

analyze the flow structure and heat transfer through the 

active walls with the aid of plots of streamlines, 

isotherms and local Nusselt numbers. 

 

 2. Description of the model and numerical 
procedure 

2.1 Problem formulation 

The physical model considered in this work is shown in 

Figure 1, it’s a square cavity or enclosure of side length 

H filled with a Newtonian incompressible fluid heated 

by an obstacle of length d and width e centrally fixed to 

the bottom wall. The vertical wall and the top wall are 

maintained at a cold temperature Tc<Th.The remaining 

walls of the enclosure are kept insulated. 

 

Fig. 1 Physical model and coordinates. 

2.2 Numerical approach 

The unsteady Navier–Stokes and energy equations are 

discretized by a second-order time stepping of finite 

difference type. A projection method [7] is used to 

solve the Navier–Stokes equations. An intermediate 

velocity is first computed and later updated for 

satisfaction of mass continuity. In the intermediate 

velocity field the old pressure is used. A Poisson 

equation, with the divergence of the intermediate 

velocity field as the source term, is then solved to 

obtain the pressure correction and the real velocity 

field. 

A finite-volume method [8] is used to discretize the 

Navier–Stokes and energy equations. The advective 

terms are discretized using a QUICK third-order 

scheme [9] in the momentum equation and a second 

order central differencing one in the energy equation. 
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The discretized momentum and energy equations are 

resolved using the red and black successive over 

relaxation method RBSOR [10], while the Poisson 

pressure correction equation is solved using a full 

multigrid method (FMG) [11].  

The convergence of the numerical results is established 

at each time step according to the following criterion: 
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where X stands for u,ν,p, or θ and k is the iteration 

level. 

The dimensionless governing equations for the present 

system can be expressed by the following unsteady, 

two-dimensional equations. In the light of the 

Boussinesq approximation the dimensionless equation 

are given by: 
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2iδ is the Kronecker symbol. 
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It is worth noting that equations were solved by an 

iterative method RBSOR coupled with a multigrid 

acceleration . 

3. Results and discussion 

3.1Code validation 

The code was validated by Ben-Cheikh et al. [9]. In this 

work, the influence of the inclination of a cavity filled 

with an incompressible fluid containing an obstacle 

located on the bottom wall was studied. Table 1 

summarizes some of the results obtained in ref. [12]. 

The authors showed (for moderate Rayleigh numbers) 

that a grid of 80×80 size was sufficient to obtain the 

results of the grid independence. For this reason, we 

used the code with the same grid size. In this 

investigation, boundary conditions have been modified 

in order to adapt the code to the present study.  

3.2 Effect of Rayleigh number 

Figure 2 shows the streamlines for wide ranges of 

Rayleigh number (103≤ Ra≤105). It is noted that global 

flow pattern is described by two counter-rotating 

vortex and symmetrical with respect to the median 

plan. In addition, the increase of Rayleigh numbers 

tends to make the center of vortex upper with a slight 

inclination according to the midline. 

 

Fig.2 streamlines at the plan (x,y) for different Rayleigh 

numbers, Pr=0.71. 
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Figure 3 depicting the evolution of the temperature 

at the point (0.1, 0.7), clearly shows that the flow 

become unsteady by monotonously augmenting the 

number of Rayleigh until 5×105. According to this 

Rayleigh number value, a slight decrease is observed in 

the extreme values of the stream function. This 

decrease is explained by the fact that from Ra = 5x105, 

a small areas of recirculation occurs at the horizontal 

wall of the obstacle. A zoom in this area detect the 

presence of these two secondary vortices (see Figure 

4), which are at the origin of the transition to the 

unsteady state flow. 

 
Fig. 3 Evolution of unsteady temperature versus time for Ra 
= 5××105 and Pr = 0.71. 
 

 
Fig. 4 Zoom of the streamlines at the horizontal wall of the 

obstacle for Ra = 5×105 and Pr = 0.71. 
 

Profiles of the velocity component-v (x) at y = 0.5 

for 103 ≤ Ra ≤ 105 is plotted in Figure 5. In addition to 

the symmetry of the flow with respect to the center line 

x = 0.5, this figure shows that the rotational speed of 

the rotating vortex increases with the Rayleigh number. 

We can also see that for a Rayleigh number in the range 

103
≤Ra≤105, minimum values at the horizontal axis of 

the component v approaches to the center line x=0.5. 

Whereas, the opposite flow trend occurs when 

Ra=105.For low Rayleigh numbers Ra=103 and Ra=5

× 103, the isotherms present almost concentric 

ellipsoid presenting a symmetrical structure with 

respect to the vertical plan passing through x = 1/2 

(see Figure 6). 

By further enhancing the Ra value, the deformation of 

the isotherms increases. In fact, thermal boundary 

layers become more and more tightened at the active 

walls and a net increase of thermal stratification is 

observed. 

 

 
Fig. 5 Variation of the velocity profiles v versus x for 

different Rayleigh numbers at position y=0.5. 

To study the average heat transfer at the vicinity of the 

active walls of the cavity, we computed the average 

Nusselt number at these walls (figure 7). The values 

obtained were used to establish a correlation in terms of 

the average Nusselt number and the Rayleigh number 

expressed as follows: 2702.03084.0 RaNumoy ×=
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Fig. 6 Isotherms on different Rayleigh numbers in the 

plan(x, y). 

 

Fig. 7 Overall average Nusselt numbers computed at cold 

walls versus Rayleigh number for Pr=0.71. 

 

3.3 Effect of the boundary conditions on the 

temperature 

In order to study different ways of cooling the hot 

source, four configurations denoted by C2, C3, C4 and 

C5 are considered and shown schematically in figure 8. 

 

Fig. 8 Different cooling configurations 

C2 and C3 configurations corresponding to the case 

where the hot obstacle is cooled by two walls, the 

remaining walls are supposed adiabatic, 

Configurations C4 and C5 are relative to a single wall 

cooling. When Ra = 103 and accordingly to 

configuration C2, we noted the appearance of two 

counterclockwise rotating vortexes symmetrically 

distributed with respect to the centerline. By slightly 

approaching the center of the cavity, the streamlines 

become tighter. Considering the configuration C3, one 

can notice the presence of a primary vortex turning 

counterclockwise and occupying the whole domain 

and the left part of the cavity. A clockwise rotating 

secondary vortex, with less volume seems to arise and 

occupy the right domain of the cavity. For 

configurations C4 and C5 the flow is almost the same 

as that observed for the case C2 C3. By increasing the 

number of Ra (Ra = 105), the general appearance of 

vortices remains unchanged. 

Figures 8 and 9 reflect the isotherms for Ra = 103 and 

Ra = 105 relatively to the four configurations studied. 

For the low Rayleigh number value (Ra = 103) and far 

distant from the obstacle, the distance between the 

different iso-values of temperature remains almost 

constant meaning that the heat transfer is mainly due 

to conduction. Besides, the isotherms become more 

and more restricted near the hot and cold walls. We 

can also point out that these isotherms are more 
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deformed but remain in a good accordance with the 

structures of the flow vortex. Such phenomenon 

shows clearly the dominance of the mode of 

convective heat transfer for high Rayleigh numbers. 

 

Fig. 9 Isotherms of different configurations for Ra = 103, Pr 

= 0.71. 

 

Fig. 10 Isotherms of different configurations for Ra = 105, 

Pr = 0.71. 

Assuming that the general formula of the relative 

deviation is expressed as follows: 

100
min

minmax
% ×−=

Nu

NuNu
E

 

 

Table 1 Comparision of Ben-Cheikh et al. [9] results and those of Frederic and Moraga[13] 

 

              Nu(Rk=100)                                    Nu(Rk=1000) 

Ra Ben-Cheikh et al.[9] study                 [13]         Error(%) Ben-Cheikh et al.[9] study                         [13]             Error(%) 

104 2.008 1.990         0.9 2.109            2.084 1.2 

105 4.557 4.530 0.6 4.724 4.741 -0.4 

106 9.293 9.312 -0.2 9.477 9.721 -2.5 

 

Table 2 Variation of average Nusselt number values according to configurations C2 and C3 with respect to different Rayleigh 

and the corresponding relative errors. 

 

Configurations C2 C3 
Relative 

deviations(%) 

( )310=RaNu  3.00 2.14 28.53 

( )3105×=RaNu  3.20 2.39 25.28 

( )410=RaNu  3.63 2.88 20.51 

( )4105×=RaNu  5.52 4.26 22.85 
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Configurations C4 C5 
Relative 

deviations 
(%) 

( )310=RaNu  1.17 1.80 34.46 

( )3105×=RaNu  1.19 2.11 43.36 

( )410=RaNu  1.69 2.44 30.64 

( )4105×=RaNu  3.55 3.55 0.10 

( )510=RaNu  4.42 4.19 5.29 

The average Nusselt number was plotted as a function 

of Rayleigh number for all configurations. As 

expected, the Nusselt number increases with the 

Rayleigh for values less than Ra = 104 the Nusselt 

number remains weaker. Using the least squares 

method, correlation of the average Nusselt number 

and the Rayleigh number are proposed for C2, C3, C4 

and C5, respectively (5×103 ≤ Ra ≤ 105): 

 
2473.03820.0 RaNumoy =

 

2471.02939.0 RaNumoy =
 

2491.02175.0 RaNumoy =
 

0597.01587.0 RaNumoy =
 

 

Fig.11 Evolution of average Nusselt number versus 

Rayleigh number for configurations 2 and 3, Pr = 0.71. 

 

Fig.12 Evolution of average Nusselt number versus 

Rayleigh number for configurations 4 and 5, Pr = 0.71. 

 

 

Table 3 Variation of average Nusselt number values according to configurations C4 and C5 with respect to different Rayleigh 

and the corresponding relative errors. 
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4. Conclusion 

In the current study, we presented the results of the 

study of natural convection in a cavity with an 

obstacle on its hot wall for Rayleigh numbers ranging 

from 103 to 105. It should be noted that the flow 

remains steady for all Rayleigh numbers Ra≤5.105. 

This unsteady behavior is not analyzed in the current 

investigation but in another hand it will be extended 

for a three-dimensional case where unsteady 

phenomena is seen to be more apparent. 

 A correlation between the heat transfer medium 

through the active walls of the cavity and Rayleigh 

numbers could then be determined. 

On another hand, the effect of different cooling 

configurations of the solid obstacle on the flow 

structure and thermal transfer is discussed and 

analyzed. It is found that, temperature boundary 

conditions strongly modify the internal flow pattern 

and the isotherms. Among the four studied 

configurations, those that correspond to maximum and 

minimum heat transfer rate were determined. 

Furthermore, correlations relatively to the four 

investigated configurations were proposed in terms of 

the average Nusselt number and Rayleigh number. 
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