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Abstract: Entropy generation in double diffusive convection through a rectangular porous cavity saturated by a 

binary perfect gas mixture is numerically studied using Darcy – Brinkman formulation. The set of equation 

describing the phenomenon is solved by using a modified version of the Control Volume Finite-Element Method. 

Effect of the enclosure geometry on entropy generation was investigated. The results are numerically presented 

through graphs and maps to observe the effects of aspect ratio of the cavity on entropy generation for the two cases 

of opposite and cooperatives buoyancy forces.  
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1. Introduction 

1 Double diffusive convective flow caused by the 

combined influence of thermal and solute buoyancy 

forces through porous media has been frequently 

studied due to its importance in various technological 

applications. A large overview of convection in 

porous media for many systems and situations are 

well documented in the literature [1, 2]. A numerical 

study of double-diffusive natural convection in a 

porous cavity using the Darcy–Brinkman formulation 

was reported by Goyeau et al. [3]. Kramer et al. [4] 

used the boundary domain integral method to study 

double diffusive natural convection in porous media. 

Khadiri et al. [5] numerically studied thermosolutal 

natural convection through homogeneous and 
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isotropic porous media, saturated with a binary fluid 

in two and three dimensional approximations.  

Interest in second law analysis has recently been 

intensified; it is the basis of most formulations of both 

equilibrium and no equilibrium thermodynamics. 

Baytas [6] studied entropy generation in natural 

convection in an inclined enclosure with differentially 

heated vertical walls and insulated horizontal walls. 

He found that as Darcy-modified Rayleigh number 

decreases, heat transfer irreversibility begins to 

dominate fluid friction irreversibility. Entropy 

generation due to forced convection in a porous 

medium was analytically investigated by Hooman et 

al. [7, 8]. Hidouri et al. [9] and Magherbi et al. [10] 

numerically studied entropy generation in double 

diffusive convection in a square cavity by considering 

the cross thermal diffusion effects.  
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This study investigates a porous enclosure 

submitted to double diffusive convection and 

saturated with a binary perfect gas mixture. The work 

analyzes the influence of the geometry of the cavity 

on entropy generation in transient state for both cases 

of cooperative and opposite buoyancy forces. 

 

2. Problem definition 
A two dimensional rectangular porous cavity of 

height a and length b, and saturated with a binary 

perfect gas mixture and submitted to horizontal 

temperature and concentration gradients is considered. 

The heated and the cooled vertical walls are at 

uniform but different temperatures and concentrations 

(Th, Ch) and (Tc, Cc), while the two horizontal walls 

are insulated. A schematic of this model is presented 

in Fig. 1. The porous medium is isotropic, 

homogeneous and in thermodynamic equilibrium with 

the fluid. All physical properties of the fluid are 

assumed to be constant, except its density which 

satisfies the Boussinesq approximation such that: 
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The macroscopic conservation equations describing 

the transport phenomena in the cavity are [1]:  
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The average heat and mass transfer fluxes at the 

heated walls are given in dimensionless terms by the 

Nusselt and Sherwood numbers, respectively: 
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The dimensionless initial and boundary conditions 

are: 

For the hole space, at :0=τ  
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3. Entropy generation 

Following Hidouri et al.[9] and Hooman et al. [7, 

8], the expression of the volumetric entropy 

generation in double diffusive convection through a 
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Fig.1 Schematic diagram of the porous enclosure 
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porous medium for a single diffusing species in 2D 

approximation is given by: 
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This expression is the result of regrouping three terms: 

the entropy generation due to thermal gradients, the 

viscous dissipation and the diffusion entropy 

generation terms. 

The dimensionless form of local entropy generation 

is obtained by using the dimensionless variables 

previously listed and is given by: 

fNdNNN ++= θ                              (12)                         

where:  
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coefficients, called irreversibility distribution ratios. 

Ω
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number, the temperature and the concentration ratios, 

respectively.  

The total dimensionless entropy generation is 

obtained by numerical integration, over the cavity 

volume A, of the dimensionless local entropy 

generation. It is given by: 

∫=

A

dA.lTsTs .                                (14) 

 

4. Numerical procedure 
The used numerical method consists on a modified 

version of the Control Volume Finite-Element Method 

(CVFEM) of Saabas and Baliga [11] adapted to 

standard-staggered grids, in which pressure and 

velocity components are calculated and stored at 

different points. The SIMPLER algorithm of Patankar 

[12] is applied to resolve the coupled 

pressure-velocity equations in order to obtain 

temperature, concentration and velocity fields at any 

time τ . Local entropy generation SlT is then 

calculated at any nodal point of the cavity. The total 

entropy generation for the entire cavity ST is then 

obtained by numerical integration. The used numerical 

code written in FORTRAN language described and 

validated in details in Abbassi et al. [13, 14] was 

modified in order to investigate the present problem. 

To test the accuracy of the present numerical study, 

the average values of Nusselt and sherwood numbers 

are given in Table 1 and compared with with those of  

Karmer et al. [4]. It is seen that the results are in good 

agreement with those given by the literature. 

 

Table 1: Average Nusselt and Sherwood numbers for 

Le = 10, DA= 10-1, Ra* = 100 

N  -1 0 1 2 

Present 

study 

Nu 

Sh 

0.98 

0.98 

0.99 

1.09 

1.07 

2.70 

1.08 

3.01 

Kramer et 

al. [4] 

Nu 

Sh 

1.0 

1.0 

1.0 

1.08 

1.07 

2.66 

1.09 

2.95 

 

5. Result and discussion 
The considered medium is a rectangular porous 

cavity with height a and length b (the aspect ratio :  

A = a/b), filled with a binary perfect gas mixture 

characterized by Pr = 0.71 and Le = 1.2. The 

operating parameters are in the following ranges:   

Da =10-2, Ra* = 100, -5 ≤ N ≤ 5 and 0,5 ≤ A ≤ 5  .  

All the above parameters are chosen after several 

numerical computations. Due to large number of 
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Fig.3: Total entropy generation versus time 

DA = 10-2, N = 5 

τ 

ST 

a : A = 0,5 
b : A = 1 
c : A = 2 
d : A = 5 

a  

b 
c  
d 

Fig.3: Total entropy generation versus time 

DA = 10-2, N = -5 

τ 

ST 

a : A = 0,5 
b : A = 1 
c : A = 2 
d : A = 5 a  

b c  
d 

parameters, the porous medium proprieties are kept 
constant, they are given by: .1  ,1  ,1 === kRΛ σ  The 

dimensionless coefficients characterizing the entropy 

generation are: Br* = 10-4, φ1 = 0.5 et φ2 = 10-2.  

Figs. 2 and 3 show the variation of transient entropy 

generation for different values of aspect ratio.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

As it can be seen, entropy generation increases at 

the beginning of the transient state, the heat transfer is 

made by simple conduction and the mass transfer is 

made by diffusion mode. It can be noticed that 

oscillations of entropy generation before the steady 

state corresponds to the non linear branch of 

thermodynamics for irreversible processes. Entropy 

generation decreases and tends towards a constant 

asymptotic value at the steady state showing that the 

system’s evolution follows the linear branch of 

thermodynamics for irreversible processes.  

In steady state, it is important to notice that entropy 

generation increases with the aspect ratio for the two 

cases of opposite and cooperative buoyancy forces. In 

fact, this can be justified from Figs. 4, 5 and 6 

showing the isoconcentration lines, the isotherm lines 

and the streamlines for three values of aspect ratio. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

It can be seen that heat and mass transfer are more 

important as the aspect ratio is higher. For A = 1 and 

0.5, the active walls have the same length but the 

distance between active walls is higher for A = 0.5 

which explains the decrease of heat and mass transfer. 

For A = 5, the length of active wall increases and the 

heat and mass exchanged between these walls and the 

porous medium is more important. It is also seen that 

a b c 

Fig.4: a) Isoconcentrations, b) isotherms, c) 

streamlines for A = 1, N = 5. 

a 

b 

c 

Fig.5: a) Isoconcentrations, b) isotherms, c) 

streamlines for A = 0.5, N = 5. 
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velocity is intensified when increasing the aspect 

ratio. As a result, irreversibilities due to heat transfer, 

diffusion and fluid friction increase with the aspect 

ratio and then the total entropy generation is more 

important.  

 

 

 

 

 

 

 

 

 

 

 

 

From Figs. 7, for cooperative buoyancy forces, it is 

observed that entropy generation is localised on top of 

cooled and bottom of heated walls, this situation is 

inversed for opposite buoyancy force. This repartition 

of local entropy generation is due to the fact that, for 

the considered value of Darcy number, the entropy 

generation is mainly due to heat and mass transfer.  

5. Conclusion 

Influence of aspect ratio on entropy generation in 

transient state of double diffusive convection through 

a porous enclosure is numerically studied. It can be 

concluded that the total entropy generation increases 

with the aspect ratio. The entropy generation is mainly 

due to heat and mass transfer for DA=10-2 and it is 

localised near the active walls. 
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