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Abstract:Natural convection heat transfer in inclined square cavity filled with thermo-dependent power-law fluids has been 
investigated numerically. The enclosure considered here is heated and cooled with uniform fluxes from the horizontal walls, while 

the verticals ones are adiabatic. The effects of the governing parameters, which are the thermo-dependence number 10)(0 ≤≤ m , the 

flow behavior index )6.0( =n , the Rayleigh number )10( 4=Ra and the angle of inclination )120(0 °≤≤° φ , on flow structure 

and heat transfer characteristics have been examined. Results are presented in the form of streamline and isotherm plots as well as the 
variation of the Nusselt number under different conditions. 
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Nomenclature 
b: temperature coefficient. 

g: acceleration due to gravity ( )2sm  

H ′ : height or width of the enclosure (m) 
k: consistency index for a power-law fluid at the 

reference temperature ( )nsPa⋅  

m: thermo-dependence number 
n: flow behavior index for a power-law fluid. 
Nuv: the vertical average Nusselt number. 
Pr: generalisedPrandtl number. 

q′ : constant density of heat flux ( )2mW  

Ra: generalised Rayleigh number. 
T: dimensionless temperature, ( )( )*

r TTT ∆′−′=  

rT′ : reference temperature (K) 

*T∆ : characteristic temperature ( )λHq ′′=  (K) 

( )u,v  dimensionless horizontal and vertical velocities 

( ) ( )( )Hv,u ′′′= α  

( )x,y : dimensionless horizontal and vertical 

coordinates ( )( )Hy,x ′′′=  

Greek symbols 

α : thermal diffusivity of fluid at the reference 

temperature ( )sm2  

β: thermal expansion coefficient of fluid at the reference 

temperature ( )K1  

λ: thermal conductivity of fluid at the reference 

temperature ( )CmW °⋅  

µ: dynamic viscosity for a Newtonian fluid at the 

reference temperature ( )sPa⋅  

aµ : dimensionless effective viscosity of fluid. 

ρ: density of fluid at the reference temperature 

( )3mkg  

: dimensionlessvorticity, ( )( )2HΩ ′′= α  

: dimensionless stream function, ( )αψ′=  

Superscript 
':dimensional variables 
Subscripts 
a: effective variable 
max: maximum value 
r: reference value taken at the cavity centre 

 

Ω

ψ
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1. Introduction 

Natural convection from density variations within a 
non-isothermal fluid under the gravity effect has 
received considerable attention in the literature. Useful 
review can be found in the article and book by Ostrach 
[1] and Gebhart et al. [2], respectively, where most of 
the fluids considered are of Newtonian behaviour. 
However, most of materials that are of interest in a 
variety of manufacturing processes, exhibit 
non-Newtonian behaviours, which implies that, the 
shear stress is not proportional to the shear rate [2].  

These type of fluids have received, through the 
decades, considerable attention by many researchers to 
investigate it in many geometrical configurations and 
under various boundary conditions. In this frame, the 
first numerical study concerning natural convection of 
non-Newtonian fluids confined in a differentially 
heated enclosure seems to be due to Ozoe and Churchill 
[3]. These authors have identified the critical conditions 
related to the onset of convection and have shown that 
the critical Rayleigh number and the average Nusselt 
increase and decrease, respectively, with the index of 
behaviour. However, their results underestimate those 
obtained experimentally by Tien et al. (1969) [4]. 

After nearly two decades, Turki [5] investigated 
numerically a problem of natural convection in a closed 
rectangular cavity, differentially heated and filled with 
non-Newtonian fluids. His results were found to be in 
more or less satisfactory agreement with those obtained 
experimentally, one year before, by Cardon [6]. After 
that, Lamsaadi et al. [7] have studied natural-convection 
heat transfer in a horizontal enclosure containing 
non-Newtonian power-law fluids and heated from the 
bottom by a constant heat flux. The flow patterns, 
temperature distribution, and heat transfer rate are 
found to be rather sensitive to the non-Newtonian 
power-law behaviour but not to the large Prandtl 
number values (Pr>100). More recently, Allaoui et al. [8] 
analysed the onset of convection of power-law fluids in 
a shallow cavity heated from below by a constant heat 
flux. It was noted that, for shear-thinning fluids, the 
onset of convection is subcritical; whereas, for shear 
thickening fluids, convection is found to occur at a 
supercritical Rayleigh number equal to zero. 

The case of an inclined enclosure, was also 
investigated analytically and numerically by Lamsaadi 
et al. [9,10]. Heat transfer of dilatant power-law fluids 
in two dimensional tilted enclosures heated from below 
has been investigated numerically by Vinogradov et al. 
[11]. It was reported that, despite significant variation in 
heat transfer rate both Newtonian and non-Newtonian 

fluids exhibit similar behavior with the transition from 
multi-cells flow structure to a single-cell regime. 
Recently, Khezzar et al. [12].extended the work of Kim 
et al.[13]. if the behaviour index is greater than unity, 
while examining the effect on the rheological behaviour 
of the heat transfer rates for different angles of 
inclination of the cavity. The authors observed, 
depending on the Rayleigh number, the existence of a 
critical value of the inclination angle for which the heat 
transfer rate is maximum.  

On the other hand, most of the reported studies on 
natural convection involving non-Newtonian fluids 
ignored the dependence of the effective viscosity on 
temperature (thermo-dependence in other words); 
which constitutes another challenging problem to deal 
with. This can be a serious assumption, since in many 
cases this dependence has a significant influence on 
flow and heat transfer as proved, earlier, experimentally 
by Scirocco et al. [14] and numerically by Shin and Cho 
[15] whose results, of local Nusselt numbers for a 
polyacrylamide (Separan AP-273) solution, show 
70-300% heat transfer enhancement over those of a 
constant-property fluid.  

For natural convection phenomenon in such media, 
the literature review does not show an important 
number of investigations carried out in this area, 
especially for simple geometries such as square and 
rectangular cavities. Among the few studies conducted 
in this context, we can cite that of Turki [5], who found 
that, for power-law fluids filling a rectangular cavity 
differentially heated from the vertical sides, the 
consistency thermo-dependence affects substantially 
the flow structure and the local heat transfer but not 
significantly the overall one. Lately, Solomatov and 
Barr [16,17] examined numerically such an effect, for 
the same types of fluids as those considered by Turki [5], 
on the onset of the Rayleigh-Bénard convection and 
found that a decrease of the viscosity with the 
temperature anticipates the convection onset. Recently, 
Kaddiri et al. [18] analysed the effects of temperature 
dependence of consistency K on natural convection of 
power-law fluids in square enclosures with 
differentially-heated horizontal walls subjected to 
constant wall heat fluxes.It emerges from such a study, 
the viscosity variations with temperature act to reduce 
the convective zone thickness, giving rise to a 
conductive lid regime that reduces notably the heat 
transfer. 

Therefore, to contribute to a better understanding of 
the thermo-dependence effects on thermal buoyancy 
convection in such media, a numerical study is 
performed to investigate the temperature-dependent 
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viscosity effect on natural convection flow and heat 
transfer in a tilted square cavity confining 
non-Newtonian power-law fluids. The enclosure 
considered here is heated and cooled with uniform 
fluxes from the horizontal walls, while the verticals 
ones are adiabatic. 

2. Mathematical Formulation 

2.1. Problem Statement and Viscosity Model 

Plotting of considered model is shown in Figure 
1.with coordinates. It consists of a two-dimensional 
square enclosure of size �′ ×�′ subjected to vertical 
uniform densities of heat flux, q' when inclination angle 
is zero. Remaining walls are adiabatic. The enclosure is 
filled with non- Newtonian fluid, which is 
incompressible and laminar. 

 
 

 

 

 

 

 

 

 

 

 

 

Figure 1. Sketch of the geometry and coordinates system 

 
The non-Newtonian fluids considered here are those 

whose rheological behaviorscan be approached by the 
power-law model, due to Ostwald-de Waele, which, in 
terms of laminar effective viscosity, can be written as 
follows: 

�′�=�� �2 	
��′�′�
� + 
��′��′�

�� + 
��′��′ + ��′
�′�

��
�������     (1) 

The two empirical parameters n�and k� appearing 
in (1), are the flow behavior and consistency indices, 
respectively. They are, in general, functions of the 

temperature, but in most of cases the 
temperature-dependence of n�  can be ignored (n� =  ) since it is weak compared to that of k� 
[14,19], which is described by the Frank-Kamenetski 
exponential law[20]: 

�� = �!"#�� ′"�$′�                                     (2) 

reflecting the viscosity diminution with the 
temperature, where b is an exponent related to the flow 
energy activation and the universal gas constant, and %′& is a reference temperature. 

Note that for n = 1 the behavior is Newtonian and 
the consistency is just the viscosity. For 0 <  < 1, the 
effective viscosity decreases with the amount of 
deformation and the behavior is shear-thinning. 
Conversely, for  > 1, the viscosity increases with the 
amount of shearing, which implies that, the fluid 
behavior is shear-thickening. 

2.2. Governing Equations and Boundary Conditions 

On the basis of the assumptions commonly adopted 
in natural convection problems, the dimensionless 
governing equations for 
Boussinesq-temperature-dependent viscosity fluids, 
written in terms of vorticity, Ω, temperature, T, and 
stream function, ψ, are as follows: 

where 

�Ω
�+ + �(�Ω,

� + �(�Ω,
�� =-&.��∇�Ω+ 2∇001��. ∇001Ω3 + 4Ω ,  (3) 

��
�+ + �(��,

� + �(��,
�� =∇�%,                             (4) 

and 

∇�ψ = −Ω,                                          (5) 

where 

6 = 7ψ
78 , 9 = − 7ψ

7: , Ω = 7�
78 - 

7�
7: , 

4Ω = -& ;<=���=>� − =���=?� @ �∂9∂x + ∂u∂y� − 2 =���∂x ∂y �∂u∂x − ∂v∂y�F
+ -&G�(∂T∂x cos(Ø, − ∂T∂y sin(Ø,, 

and 

��=e"NO <2 P	=6=>�
� + 	=9=?�

�Q + 	=6=? + =9=>�
�@

(���,�
 

For the present problem, the appropriate 
non-dimensional boundary conditions are: 

q’ 

Ø 

q’ 

�′ 

x’ y’ 

g 

�′ 
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6 = 9 = ψ = ��
� = 0	for> = 0 and > = 1          (6) 

6 = 9 = ψ = ��
�� + 1 = 0	for? = 0 and ? = 1     (7) 

In addition to the flow behavior index, n, and the 
inclination angles, Ø, three other dimensionless 
parameters appear in the above equations, namely, the 
Pearson, generalized Prandtl and Rayleigh numbers 
defined, respectively, as: 

T = − U
V�

WV�W� = − WXY(V�/V,W� ,-& = (V/[,\ ′����
]���  and 

G� = ^_\ ′��`�a′
(V/[,]�b                                     (8) 

The Pearson number (8), which is a new 
dimensionless quantity taking place in this study, 
measures the effect of temperature change on the 
effective viscosity. 

2.3. Heat Transfer 

The steady solution has been used to calculate the 
average Nusselt number in the horizontal and vertical 
directions, respectively, defined as: 

c6� = a′\ ′
b	∆� ′ = U

∆O = U
O(8,f,"O(8,U,                    (9) 

2.4. Heatlines Formulation 

The visualization of the paths followed by the heat 
flow through the enclosure requires the use of the 
heatlines concept, which consists of lines of constant 
heat function, H, that are defined, according to Kimura 
and Bejan [21], from the following equations 

�\
�� = 6% − ��

� , − �\
� = 9% − ��

��                  (10) 

whose derivation, with respect to x and y, and 
combination give rise to 

��\
�� + ��\

��� = − ���
� + ���

��                          (11) 

To obtain the boundary conditions associated with 
(13), an integration of (10), along the four cavity walls, 
is necessary, which gives: 

�(0, ?, = �(0,0,for> = 0                       (12) 

�(>, 1, = �(0,1, − >for? = 1                   (13) 

�(1, ?, = �(1,1,for> = 1                       (14) 

�(>, 0, = �(1,0, + 1 − >for? = 0              (15) 

Finally, the solution of (11) yields the values of H, in 
the computational domain, whose contour plots provide 
the heatline patterns. Note that only the differences 
between the values of H are required instead of its 
intrinsic ones, which offers the possibility to choose �(0,0, = 0 as an arbitrary reference value for H. 

 

3. Solution Procedure 

The two-dimensional governing equations have 
been discretized using the second order central finite 
difference methodology with a regular mesh size. The 
integration of (3) and (4) has been performed with the 
Alternating Direction Implicit method (ADI), originally 
used for Newtonian fluids and successfully 
experimented for non-Newtonian power-law fluids 
[3,5,7].To satisfy the mass conservation, (5) has been 
solved by a Point Successive Over Relaxation method 
(PSOR) with an optimum relaxation factor calculated 
by the Frankel formula [22]. A grid of 81×81 has been 
required for obtaining adequate results. 

The numerical results from the code have been 
validated using the benchmark data of de Vahl Davis 
[23], Turki [5] and Ouertatani [24] for natural 
convection of Newtonian and non-Newtonian fluids in 
square enclosures with differentially heated vertical 
walls and an excellent agreement was obtained (see 
Table 2 of Ref. [18] and Ref. [25] ). 

 

4. Results and Discussion 

As was reported in the past by Ozoe and Churchill 
[3], Lamsaadi et al. [7] and many others Turan et al.[26], 
the convection is rather insensitive to Pr variations, 
provided that this parameter is large enough as it is the 
case for the non-Newtonian fluids and for a large 
category of fluids having a Newtonian behavior. 
Therefore, Pr is not considered as an influencing 
parameter in this study and the simulations are 
conducted with -& → ∞. 

To examine the inclination angles and the 
thermo-dependency effects, Calculations were made 
forvarious values of Pearson number (0<m<10), 
inclination angles (0° <Ø<150°), while the flow 
behavior index andRayleigh numbers are fixed as n=0.6 
and Ra= 104.  

Figure2.illustrates the streamlines (left), isotherms 
(middle) and heatlines (right) at different inclination 
angles for Ra = 104 and different value of n=0.6. Again, 
this figure makes a comparison between the constant 
and temperature-dependent viscosity cases of fluid. It is 
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observed that the shape of the main cell is sensitive to 
the inclination angle and thermo-dependency of fluid.In 
addition, a close inspection of the isotherms shows that 
the latter change moderately by increasing Ø since their 
important distortion, observed for the case (Ø = 0°), 
tends to vanish for the case (Ø= 120°). 

For, the heatlines, an increase of the inclination 
angle reduces the number of internal recirculation, 
which shows a decrease in intensity of 
convection.Moreover, the effect of thermo-dependence 
remains the same for all the cases studied, i.e. it 
destabilizes the flow and always form two regions: a 
stagnant and the other active, whatever the value of Ø 

Concerning heat transfer, Figure3.illustrates the 
variation of average Nusselt number at different 
inclination angle for m=0. and m=10. As seen from this 
figure, the average Nusselt number increases for the tilt 
angle values from Ø= 0° to Ø= 60° reaching a 
maximum and then decreases. In addition, 
figure3shows that the effect of inclination angles does 
not change the effect of thermo-dependence of the 
viscosity on the heat transfer. 

 

5. Conclusion 

In this paper, numerical calculations have been 
presented for the natural convection flow in an inclined 
square cavity, filled with power-law fluids and 
submitted to vertical uniform heat fluxes, while the 
vertical walls are adiabatic. The study is focused 
particularly on temperature-dependent viscosity effect 
on natural convection flow and heat transfer in a tilted 
square cavity at a wide variety of angles of inclination. 

It emerges that the thermo-dependent 
behaviourdestabilizes the flow and always form two 
regions: a stagnant and the other active. This effect 
manifests its self only when convection is weak. 

Depending on the Rayleigh number, it is expected 
the existence of a critical value of the inclination angle 
for which the heat transfer rate is maximum.In addition, 
the effect of inclination angles does not change the 
effect of thermo-dependence of the viscosity on the heat 
transfer. 
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Figure 2. Streamlines (left), isotherms (medium) and heatlines 

(right) for Ra=104; n=0.6; m=0 (black solid line), m=10 (red 

dashdot line) and various value of Ø. 

Figure 3. Evolution of vertical average Nusselt number 

in function of Ø for Ra=104; n=0.6; m=0 (black solid 

line) and m=10 (red dashdot line).  


